Metamath Proof Explorer


Theorem expmulz

Description: Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Assertion expmulz AA0MNA M N=AMN

Proof

Step Hyp Ref Expression
1 elznn0nn NN0NN
2 elznn0nn MM0MM
3 expmul AM0N0A M N=AMN
4 3 3expia AM0N0A M N=AMN
5 4 adantlr AA0M0N0A M N=AMN
6 simp2l AA0MMN0M
7 6 recnd AA0MMN0M
8 simp3 AA0MMN0N0
9 8 nn0cnd AA0MMN0N
10 7 9 mulneg1d AA0MMN0- M N= M N
11 10 oveq2d AA0MMN0A- M N=A M N
12 simp1l AA0MMN0A
13 simp2r AA0MMN0M
14 13 nnnn0d AA0MMN0M0
15 expmul AM0N0A- M N=AMN
16 12 14 8 15 syl3anc AA0MMN0A- M N=AMN
17 11 16 eqtr3d AA0MMN0A M N=AMN
18 17 oveq2d AA0MMN01A M N=1AMN
19 expcl AM0AM
20 12 14 19 syl2anc AA0MMN0AM
21 simp1r AA0MMN0A0
22 13 nnzd AA0MMN0M
23 expne0i AA0MAM0
24 12 21 22 23 syl3anc AA0MMN0AM0
25 8 nn0zd AA0MMN0N
26 exprec AMAM0N1AMN=1AMN
27 20 24 25 26 syl3anc AA0MMN01AMN=1AMN
28 18 27 eqtr4d AA0MMN01A M N=1AMN
29 7 9 mulcld AA0MMN0 M N
30 14 8 nn0mulcld AA0MMN0- M N0
31 10 30 eqeltrrd AA0MMN0 M N0
32 expneg2 A M N M N0A M N=1A M N
33 12 29 31 32 syl3anc AA0MMN0A M N=1A M N
34 expneg2 AMM0AM=1AM
35 12 7 14 34 syl3anc AA0MMN0AM=1AM
36 35 oveq1d AA0MMN0AMN=1AMN
37 28 33 36 3eqtr4d AA0MMN0A M N=AMN
38 37 3expia AA0MMN0A M N=AMN
39 5 38 jaodan AA0M0MMN0A M N=AMN
40 simp2 AA0M0NNM0
41 40 nn0cnd AA0M0NNM
42 simp3l AA0M0NNN
43 42 recnd AA0M0NNN
44 41 43 mulneg2d AA0M0NNM- N= M N
45 44 oveq2d AA0M0NNAM- N=A M N
46 simp1l AA0M0NNA
47 simp3r AA0M0NNN
48 47 nnnn0d AA0M0NNN0
49 expmul AM0N0AM- N=AMN
50 46 40 48 49 syl3anc AA0M0NNAM- N=AMN
51 45 50 eqtr3d AA0M0NNA M N=AMN
52 51 oveq2d AA0M0NN1A M N=1AMN
53 41 43 mulcld AA0M0NN M N
54 40 48 nn0mulcld AA0M0NNM- N0
55 44 54 eqeltrrd AA0M0NN M N0
56 46 53 55 32 syl3anc AA0M0NNA M N=1A M N
57 expcl AM0AM
58 46 40 57 syl2anc AA0M0NNAM
59 expneg2 AMNN0AMN=1AMN
60 58 43 48 59 syl3anc AA0M0NNAMN=1AMN
61 52 56 60 3eqtr4d AA0M0NNA M N=AMN
62 61 3expia AA0M0NNA M N=AMN
63 simp1l AA0MMNNA
64 simp2l AA0MMNNM
65 64 recnd AA0MMNNM
66 simp2r AA0MMNNM
67 66 nnnn0d AA0MMNNM0
68 63 65 67 34 syl3anc AA0MMNNAM=1AM
69 68 oveq1d AA0MMNNAMN=1AMN
70 63 67 19 syl2anc AA0MMNNAM
71 simp1r AA0MMNNA0
72 66 nnzd AA0MMNNM
73 63 71 72 23 syl3anc AA0MMNNAM0
74 70 73 reccld AA0MMNN1AM
75 simp3l AA0MMNNN
76 75 recnd AA0MMNNN
77 simp3r AA0MMNNN
78 77 nnnn0d AA0MMNNN0
79 expneg2 1AMNN01AMN=11AMN
80 74 76 78 79 syl3anc AA0MMNN1AMN=11AMN
81 77 nnzd AA0MMNNN
82 exprec AMAM0N1AMN=1AMN
83 70 73 81 82 syl3anc AA0MMNN1AMN=1AMN
84 83 oveq2d AA0MMNN11AMN=11AMN
85 expcl AMN0AMN
86 70 78 85 syl2anc AA0MMNNAMN
87 expne0i AMAM0NAMN0
88 70 73 81 87 syl3anc AA0MMNNAMN0
89 86 88 recrecd AA0MMNN11AMN=AMN
90 expmul AM0N0A- M- N=AMN
91 63 67 78 90 syl3anc AA0MMNNA- M- N=AMN
92 65 76 mul2negd AA0MMNN- M- N= M N
93 92 oveq2d AA0MMNNA- M- N=A M N
94 91 93 eqtr3d AA0MMNNAMN=A M N
95 84 89 94 3eqtrd AA0MMNN11AMN=A M N
96 69 80 95 3eqtrrd AA0MMNNA M N=AMN
97 96 3expia AA0MMNNA M N=AMN
98 62 97 jaodan AA0M0MMNNA M N=AMN
99 39 98 jaod AA0M0MMN0NNA M N=AMN
100 2 99 sylan2b AA0MN0NNA M N=AMN
101 1 100 biimtrid AA0MNA M N=AMN
102 101 impr AA0MNA M N=AMN