Metamath Proof Explorer


Theorem extdgcl

Description: Closure of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion extdgcl E/FldExtFE.:.F0*

Proof

Step Hyp Ref Expression
1 extdgval E/FldExtFE.:.F=dimsubringAlgEBaseF
2 fldextfld1 E/FldExtFEField
3 isfld EFieldEDivRingECRing
4 2 3 sylib E/FldExtFEDivRingECRing
5 4 simpld E/FldExtFEDivRing
6 fldextress E/FldExtFF=E𝑠BaseF
7 fldextfld2 E/FldExtFFField
8 isfld FFieldFDivRingFCRing
9 7 8 sylib E/FldExtFFDivRingFCRing
10 9 simpld E/FldExtFFDivRing
11 6 10 eqeltrrd E/FldExtFE𝑠BaseFDivRing
12 eqid BaseF=BaseF
13 12 fldextsubrg E/FldExtFBaseFSubRingE
14 eqid subringAlgEBaseF=subringAlgEBaseF
15 eqid E𝑠BaseF=E𝑠BaseF
16 14 15 sralvec EDivRingE𝑠BaseFDivRingBaseFSubRingEsubringAlgEBaseFLVec
17 5 11 13 16 syl3anc E/FldExtFsubringAlgEBaseFLVec
18 dimcl subringAlgEBaseFLVecdimsubringAlgEBaseF0*
19 17 18 syl E/FldExtFdimsubringAlgEBaseF0*
20 1 19 eqeltrd E/FldExtFE.:.F0*