Metamath Proof Explorer


Theorem extdggt0

Description: Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion extdggt0 E/FldExtF0<E.:.F

Proof

Step Hyp Ref Expression
1 fldextfld1 E/FldExtFEField
2 isfld EFieldEDivRingECRing
3 2 simplbi EFieldEDivRing
4 1 3 syl E/FldExtFEDivRing
5 fldextress E/FldExtFF=E𝑠BaseF
6 fldextfld2 E/FldExtFFField
7 isfld FFieldFDivRingFCRing
8 7 simplbi FFieldFDivRing
9 6 8 syl E/FldExtFFDivRing
10 5 9 eqeltrrd E/FldExtFE𝑠BaseFDivRing
11 eqid BaseF=BaseF
12 11 fldextsubrg E/FldExtFBaseFSubRingE
13 eqid subringAlgEBaseF=subringAlgEBaseF
14 eqid E𝑠BaseF=E𝑠BaseF
15 13 14 sralvec EDivRingE𝑠BaseFDivRingBaseFSubRingEsubringAlgEBaseFLVec
16 4 10 12 15 syl3anc E/FldExtFsubringAlgEBaseFLVec
17 eqid BaseE=BaseE
18 17 subrgss BaseFSubRingEBaseFBaseE
19 12 18 syl E/FldExtFBaseFBaseE
20 13 17 sradrng EDivRingBaseFBaseEsubringAlgEBaseFDivRing
21 4 19 20 syl2anc E/FldExtFsubringAlgEBaseFDivRing
22 drngdimgt0 subringAlgEBaseFLVecsubringAlgEBaseFDivRing0<dimsubringAlgEBaseF
23 16 21 22 syl2anc E/FldExtF0<dimsubringAlgEBaseF
24 extdgval E/FldExtFE.:.F=dimsubringAlgEBaseF
25 23 24 breqtrrd E/FldExtF0<E.:.F