Metamath Proof Explorer


Theorem f1cof1b

Description: If the range of F equals the domain of G , then the composition ( G o. F ) is injective iff F and G are both injective. (Contributed by GL and AV, 19-Sep-2024)

Ref Expression
Assertion f1cof1b F : A B G : C D ran F = C G F : A 1-1 D F : A 1-1 B G : C 1-1 D

Proof

Step Hyp Ref Expression
1 simp1 F : A B G : C D ran F = C F : A B
2 eqid ran F C = ran F C
3 eqid F -1 C = F -1 C
4 eqid F F -1 C = F F -1 C
5 simp2 F : A B G : C D ran F = C G : C D
6 eqid G ran F C = G ran F C
7 simp3 F : A B G : C D ran F = C ran F = C
8 1 2 3 4 5 6 7 f1cof1blem F : A B G : C D ran F = C F -1 C = A ran F C = C F F -1 C = F G ran F C = G
9 simpll F -1 C = A ran F C = C F F -1 C = F G ran F C = G F -1 C = A
10 f1eq2 F -1 C = A G F : F -1 C 1-1 D G F : A 1-1 D
11 8 9 10 3syl F : A B G : C D ran F = C G F : F -1 C 1-1 D G F : A 1-1 D
12 11 bicomd F : A B G : C D ran F = C G F : A 1-1 D G F : F -1 C 1-1 D
13 ancom G ran F C = G F F -1 C = F F F -1 C = F G ran F C = G
14 13 anbi2i F -1 C = A ran F C = C G ran F C = G F F -1 C = F F -1 C = A ran F C = C F F -1 C = F G ran F C = G
15 8 14 sylibr F : A B G : C D ran F = C F -1 C = A ran F C = C G ran F C = G F F -1 C = F
16 15 adantr F : A B G : C D ran F = C G F : F -1 C 1-1 D F -1 C = A ran F C = C G ran F C = G F F -1 C = F
17 1 adantr F : A B G : C D ran F = C G F : F -1 C 1-1 D F : A B
18 5 adantr F : A B G : C D ran F = C G F : F -1 C 1-1 D G : C D
19 simpr F : A B G : C D ran F = C G F : F -1 C 1-1 D G F : F -1 C 1-1 D
20 17 2 3 4 18 6 19 fcoresf1 F : A B G : C D ran F = C G F : F -1 C 1-1 D F F -1 C : F -1 C 1-1 ran F C G ran F C : ran F C 1-1 D
21 20 ancomd F : A B G : C D ran F = C G F : F -1 C 1-1 D G ran F C : ran F C 1-1 D F F -1 C : F -1 C 1-1 ran F C
22 simprl F -1 C = A ran F C = C G ran F C = G F F -1 C = F G ran F C = G
23 simpr F -1 C = A ran F C = C ran F C = C
24 23 adantr F -1 C = A ran F C = C G ran F C = G F F -1 C = F ran F C = C
25 eqidd F -1 C = A ran F C = C G ran F C = G F F -1 C = F D = D
26 22 24 25 f1eq123d F -1 C = A ran F C = C G ran F C = G F F -1 C = F G ran F C : ran F C 1-1 D G : C 1-1 D
27 26 biimpd F -1 C = A ran F C = C G ran F C = G F F -1 C = F G ran F C : ran F C 1-1 D G : C 1-1 D
28 simprr F -1 C = A ran F C = C G ran F C = G F F -1 C = F F F -1 C = F
29 simpll F -1 C = A ran F C = C G ran F C = G F F -1 C = F F -1 C = A
30 28 29 24 f1eq123d F -1 C = A ran F C = C G ran F C = G F F -1 C = F F F -1 C : F -1 C 1-1 ran F C F : A 1-1 C
31 30 biimpd F -1 C = A ran F C = C G ran F C = G F F -1 C = F F F -1 C : F -1 C 1-1 ran F C F : A 1-1 C
32 27 31 anim12d F -1 C = A ran F C = C G ran F C = G F F -1 C = F G ran F C : ran F C 1-1 D F F -1 C : F -1 C 1-1 ran F C G : C 1-1 D F : A 1-1 C
33 16 21 32 sylc F : A B G : C D ran F = C G F : F -1 C 1-1 D G : C 1-1 D F : A 1-1 C
34 12 33 sylbida F : A B G : C D ran F = C G F : A 1-1 D G : C 1-1 D F : A 1-1 C
35 ffrn F : A B F : A ran F
36 ax-1 F : A B F : A ran F F : A B
37 35 36 impbid2 F : A B F : A B F : A ran F
38 37 anbi1d F : A B F : A B Fun F -1 F : A ran F Fun F -1
39 df-f1 F : A 1-1 B F : A B Fun F -1
40 df-f1 F : A 1-1 ran F F : A ran F Fun F -1
41 38 39 40 3bitr4g F : A B F : A 1-1 B F : A 1-1 ran F
42 41 3ad2ant1 F : A B G : C D ran F = C F : A 1-1 B F : A 1-1 ran F
43 f1eq3 ran F = C F : A 1-1 ran F F : A 1-1 C
44 43 3ad2ant3 F : A B G : C D ran F = C F : A 1-1 ran F F : A 1-1 C
45 42 44 bitrd F : A B G : C D ran F = C F : A 1-1 B F : A 1-1 C
46 45 anbi2d F : A B G : C D ran F = C G : C 1-1 D F : A 1-1 B G : C 1-1 D F : A 1-1 C
47 46 adantr F : A B G : C D ran F = C G F : A 1-1 D G : C 1-1 D F : A 1-1 B G : C 1-1 D F : A 1-1 C
48 34 47 mpbird F : A B G : C D ran F = C G F : A 1-1 D G : C 1-1 D F : A 1-1 B
49 48 ancomd F : A B G : C D ran F = C G F : A 1-1 D F : A 1-1 B G : C 1-1 D
50 49 ex F : A B G : C D ran F = C G F : A 1-1 D F : A 1-1 B G : C 1-1 D
51 f1cof1 G : C 1-1 D F : A 1-1 B G F : F -1 C 1-1 D
52 51 ancoms F : A 1-1 B G : C 1-1 D G F : F -1 C 1-1 D
53 imaeq2 C = ran F F -1 C = F -1 ran F
54 cnvimarndm F -1 ran F = dom F
55 53 54 eqtrdi C = ran F F -1 C = dom F
56 55 eqcoms ran F = C F -1 C = dom F
57 56 3ad2ant3 F : A B G : C D ran F = C F -1 C = dom F
58 1 fdmd F : A B G : C D ran F = C dom F = A
59 57 58 eqtrd F : A B G : C D ran F = C F -1 C = A
60 59 10 syl F : A B G : C D ran F = C G F : F -1 C 1-1 D G F : A 1-1 D
61 52 60 syl5ib F : A B G : C D ran F = C F : A 1-1 B G : C 1-1 D G F : A 1-1 D
62 50 61 impbid F : A B G : C D ran F = C G F : A 1-1 D F : A 1-1 B G : C 1-1 D