Metamath Proof Explorer


Theorem f1domfi

Description: If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg ). (Contributed by BTernaryTau, 25-Sep-2024)

Ref Expression
Assertion f1domfi BFinF:A1-1BAB

Proof

Step Hyp Ref Expression
1 f1cnv F:A1-1BF-1:ranF1-1 ontoA
2 f1f F:A1-1BF:AB
3 2 frnd F:A1-1BranFB
4 ssfi BFinranFBranFFin
5 3 4 sylan2 BFinF:A1-1BranFFin
6 f1ofn F-1:ranF1-1 ontoAF-1FnranF
7 fnfi F-1FnranFranFFinF-1Fin
8 6 7 sylan F-1:ranF1-1 ontoAranFFinF-1Fin
9 1 5 8 syl2an2 BFinF:A1-1BF-1Fin
10 cnvfi F-1FinF-1-1Fin
11 f1rel F:A1-1BRelF
12 dfrel2 RelFF-1-1=F
13 11 12 sylib F:A1-1BF-1-1=F
14 13 eleq1d F:A1-1BF-1-1FinFFin
15 14 biimpac F-1-1FinF:A1-1BFFin
16 10 15 sylan F-1FinF:A1-1BFFin
17 9 16 sylancom BFinF:A1-1BFFin
18 f1dom3g FFinBFinF:A1-1BAB
19 18 3expib FFinBFinF:A1-1BAB
20 17 19 mpcom BFinF:A1-1BAB