Metamath Proof Explorer


Theorem f1o2d2

Description: Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses f1o2d2.f F=xA,yBC
f1o2d2.r φxAyBCD
f1o2d2.i φzDIA
f1o2d2.j φzDJB
f1o2d2.1 φxAyBzDx=Iy=Jz=C
Assertion f1o2d2 φF:A×B1-1 ontoD

Proof

Step Hyp Ref Expression
1 f1o2d2.f F=xA,yBC
2 f1o2d2.r φxAyBCD
3 f1o2d2.i φzDIA
4 f1o2d2.j φzDJB
5 f1o2d2.1 φxAyBzDx=Iy=Jz=C
6 mpompts xA,yBC=wA×B1stw/x2ndw/yC
7 1 6 eqtri F=wA×B1stw/x2ndw/yC
8 xp1st wA×B1stwA
9 xp2nd wA×B2ndwB
10 2 anassrs φxAyBCD
11 10 ralrimiva φxAyBCD
12 rspcsbela 2ndwByBCD2ndw/yCD
13 9 11 12 syl2anr φxAwA×B2ndw/yCD
14 13 an32s φwA×BxA2ndw/yCD
15 14 ralrimiva φwA×BxA2ndw/yCD
16 rspcsbela 1stwAxA2ndw/yCD1stw/x2ndw/yCD
17 8 15 16 syl2an2 φwA×B1stw/x2ndw/yCD
18 3 4 opelxpd φzDIJA×B
19 9 ad2antrl φwA×BzD2ndwB
20 sbceq2g 2ndwB[˙2ndw/y]˙z=Cz=2ndw/yC
21 19 20 syl φwA×BzD[˙2ndw/y]˙z=Cz=2ndw/yC
22 21 sbcbidv φwA×BzD[˙1stw/x]˙[˙2ndw/y]˙z=C[˙1stw/x]˙z=2ndw/yC
23 8 ad2antrl φwA×BzD1stwA
24 19 adantr φwA×BzDx=1stw2ndwB
25 eqop wA×Bw=IJ1stw=I2ndw=J
26 25 ad2antrl φwA×BzDw=IJ1stw=I2ndw=J
27 eqeq1 x=1stwx=I1stw=I
28 eqeq1 y=2ndwy=J2ndw=J
29 27 28 bi2anan9 x=1stwy=2ndwx=Iy=J1stw=I2ndw=J
30 29 bicomd x=1stwy=2ndw1stw=I2ndw=Jx=Iy=J
31 26 30 sylan9bb φwA×BzDx=1stwy=2ndww=IJx=Iy=J
32 31 anassrs φwA×BzDx=1stwy=2ndww=IJx=Iy=J
33 eleq1 x=1stwxA1stwA
34 8 33 syl5ibrcom wA×Bx=1stwxA
35 34 imp wA×Bx=1stwxA
36 eleq1 y=2ndwyB2ndwB
37 9 36 syl5ibrcom wA×By=2ndwyB
38 37 imp wA×By=2ndwyB
39 35 38 anim12dan wA×Bx=1stwy=2ndwxAyB
40 39 3impb wA×Bx=1stwy=2ndwxAyB
41 40 3adant1r wA×BzDx=1stwy=2ndwxAyB
42 simp1r wA×BzDx=1stwy=2ndwzD
43 41 42 jca wA×BzDx=1stwy=2ndwxAyBzD
44 43 5 sylan2 φwA×BzDx=1stwy=2ndwx=Iy=Jz=C
45 44 3anassrs φwA×BzDx=1stwy=2ndwx=Iy=Jz=C
46 32 45 bitr2d φwA×BzDx=1stwy=2ndwz=Cw=IJ
47 24 46 sbcied φwA×BzDx=1stw[˙2ndw/y]˙z=Cw=IJ
48 23 47 sbcied φwA×BzD[˙1stw/x]˙[˙2ndw/y]˙z=Cw=IJ
49 sbceq2g 1stwA[˙1stw/x]˙z=2ndw/yCz=1stw/x2ndw/yC
50 23 49 syl φwA×BzD[˙1stw/x]˙z=2ndw/yCz=1stw/x2ndw/yC
51 22 48 50 3bitr3d φwA×BzDw=IJz=1stw/x2ndw/yC
52 7 17 18 51 f1o2d φF:A×B1-1 ontoD