Description: Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by SN, 11-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1o2d2.f | |
|
f1o2d2.r | |
||
f1o2d2.i | |
||
f1o2d2.j | |
||
f1o2d2.1 | |
||
Assertion | f1o2d2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1o2d2.f | |
|
2 | f1o2d2.r | |
|
3 | f1o2d2.i | |
|
4 | f1o2d2.j | |
|
5 | f1o2d2.1 | |
|
6 | mpompts | |
|
7 | 1 6 | eqtri | |
8 | xp1st | |
|
9 | xp2nd | |
|
10 | 2 | anassrs | |
11 | 10 | ralrimiva | |
12 | rspcsbela | |
|
13 | 9 11 12 | syl2anr | |
14 | 13 | an32s | |
15 | 14 | ralrimiva | |
16 | rspcsbela | |
|
17 | 8 15 16 | syl2an2 | |
18 | 3 4 | opelxpd | |
19 | 9 | ad2antrl | |
20 | sbceq2g | |
|
21 | 19 20 | syl | |
22 | 21 | sbcbidv | |
23 | 8 | ad2antrl | |
24 | 19 | adantr | |
25 | eqop | |
|
26 | 25 | ad2antrl | |
27 | eqeq1 | |
|
28 | eqeq1 | |
|
29 | 27 28 | bi2anan9 | |
30 | 29 | bicomd | |
31 | 26 30 | sylan9bb | |
32 | 31 | anassrs | |
33 | eleq1 | |
|
34 | 8 33 | syl5ibrcom | |
35 | 34 | imp | |
36 | eleq1 | |
|
37 | 9 36 | syl5ibrcom | |
38 | 37 | imp | |
39 | 35 38 | anim12dan | |
40 | 39 | 3impb | |
41 | 40 | 3adant1r | |
42 | simp1r | |
|
43 | 41 42 | jca | |
44 | 43 5 | sylan2 | |
45 | 44 | 3anassrs | |
46 | 32 45 | bitr2d | |
47 | 24 46 | sbcied | |
48 | 23 47 | sbcied | |
49 | sbceq2g | |
|
50 | 23 49 | syl | |
51 | 22 48 50 | 3bitr3d | |
52 | 7 17 18 51 | f1o2d | |