Metamath Proof Explorer


Theorem f1opwfi

Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015)

Ref Expression
Assertion f1opwfi F:A1-1 ontoBb𝒫AFinFb:𝒫AFin1-1 onto𝒫BFin

Proof

Step Hyp Ref Expression
1 eqid b𝒫AFinFb=b𝒫AFinFb
2 simpr F:A1-1 ontoBb𝒫AFinb𝒫AFin
3 2 elin2d F:A1-1 ontoBb𝒫AFinbFin
4 f1ofun F:A1-1 ontoBFunF
5 elinel1 b𝒫AFinb𝒫A
6 elpwi b𝒫AbA
7 5 6 syl b𝒫AFinbA
8 7 adantl F:A1-1 ontoBb𝒫AFinbA
9 f1odm F:A1-1 ontoBdomF=A
10 9 adantr F:A1-1 ontoBb𝒫AFindomF=A
11 8 10 sseqtrrd F:A1-1 ontoBb𝒫AFinbdomF
12 fores FunFbdomFFb:bontoFb
13 4 11 12 syl2an2r F:A1-1 ontoBb𝒫AFinFb:bontoFb
14 fofi bFinFb:bontoFbFbFin
15 3 13 14 syl2anc F:A1-1 ontoBb𝒫AFinFbFin
16 imassrn FbranF
17 f1ofo F:A1-1 ontoBF:AontoB
18 forn F:AontoBranF=B
19 17 18 syl F:A1-1 ontoBranF=B
20 16 19 sseqtrid F:A1-1 ontoBFbB
21 20 adantr F:A1-1 ontoBb𝒫AFinFbB
22 15 21 elpwd F:A1-1 ontoBb𝒫AFinFb𝒫B
23 22 15 elind F:A1-1 ontoBb𝒫AFinFb𝒫BFin
24 simpr F:A1-1 ontoBa𝒫BFina𝒫BFin
25 24 elin2d F:A1-1 ontoBa𝒫BFinaFin
26 dff1o3 F:A1-1 ontoBF:AontoBFunF-1
27 26 simprbi F:A1-1 ontoBFunF-1
28 elinel1 a𝒫BFina𝒫B
29 28 adantl F:A1-1 ontoBa𝒫BFina𝒫B
30 elpwi a𝒫BaB
31 29 30 syl F:A1-1 ontoBa𝒫BFinaB
32 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
33 32 adantr F:A1-1 ontoBa𝒫BFinF-1:B1-1 ontoA
34 f1odm F-1:B1-1 ontoAdomF-1=B
35 33 34 syl F:A1-1 ontoBa𝒫BFindomF-1=B
36 31 35 sseqtrrd F:A1-1 ontoBa𝒫BFinadomF-1
37 fores FunF-1adomF-1F-1a:aontoF-1a
38 27 36 37 syl2an2r F:A1-1 ontoBa𝒫BFinF-1a:aontoF-1a
39 fofi aFinF-1a:aontoF-1aF-1aFin
40 25 38 39 syl2anc F:A1-1 ontoBa𝒫BFinF-1aFin
41 imassrn F-1aranF-1
42 dfdm4 domF=ranF-1
43 42 9 eqtr3id F:A1-1 ontoBranF-1=A
44 41 43 sseqtrid F:A1-1 ontoBF-1aA
45 44 adantr F:A1-1 ontoBa𝒫BFinF-1aA
46 40 45 elpwd F:A1-1 ontoBa𝒫BFinF-1a𝒫A
47 46 40 elind F:A1-1 ontoBa𝒫BFinF-1a𝒫AFin
48 5 28 anim12i b𝒫AFina𝒫BFinb𝒫Aa𝒫B
49 30 adantl b𝒫Aa𝒫BaB
50 foimacnv F:AontoBaBFF-1a=a
51 17 49 50 syl2an F:A1-1 ontoBb𝒫Aa𝒫BFF-1a=a
52 51 eqcomd F:A1-1 ontoBb𝒫Aa𝒫Ba=FF-1a
53 imaeq2 b=F-1aFb=FF-1a
54 53 eqeq2d b=F-1aa=Fba=FF-1a
55 52 54 syl5ibrcom F:A1-1 ontoBb𝒫Aa𝒫Bb=F-1aa=Fb
56 f1of1 F:A1-1 ontoBF:A1-1B
57 6 adantr b𝒫Aa𝒫BbA
58 f1imacnv F:A1-1BbAF-1Fb=b
59 56 57 58 syl2an F:A1-1 ontoBb𝒫Aa𝒫BF-1Fb=b
60 59 eqcomd F:A1-1 ontoBb𝒫Aa𝒫Bb=F-1Fb
61 imaeq2 a=FbF-1a=F-1Fb
62 61 eqeq2d a=Fbb=F-1ab=F-1Fb
63 60 62 syl5ibrcom F:A1-1 ontoBb𝒫Aa𝒫Ba=Fbb=F-1a
64 55 63 impbid F:A1-1 ontoBb𝒫Aa𝒫Bb=F-1aa=Fb
65 48 64 sylan2 F:A1-1 ontoBb𝒫AFina𝒫BFinb=F-1aa=Fb
66 1 23 47 65 f1o2d F:A1-1 ontoBb𝒫AFinFb:𝒫AFin1-1 onto𝒫BFin