Metamath Proof Explorer


Theorem f1otrge

Description: A bijection between bases which conserves distances and intervals conserves also the property of being a Euclidean geometry. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses f1otrkg.p P=BaseG
f1otrkg.d D=distG
f1otrkg.i I=ItvG
f1otrkg.b B=BaseH
f1otrkg.e E=distH
f1otrkg.j J=ItvH
f1otrkg.f φF:B1-1 ontoP
f1otrkg.1 φeBfBeEf=FeDFf
f1otrkg.2 φeBfBgBgeJfFgFeIFf
f1otrg.h φHV
f1otrge.g φG𝒢TarskiE
Assertion f1otrge φH𝒢TarskiE

Proof

Step Hyp Ref Expression
1 f1otrkg.p P=BaseG
2 f1otrkg.d D=distG
3 f1otrkg.i I=ItvG
4 f1otrkg.b B=BaseH
5 f1otrkg.e E=distH
6 f1otrkg.j J=ItvH
7 f1otrkg.f φF:B1-1 ontoP
8 f1otrkg.1 φeBfBeEf=FeDFf
9 f1otrkg.2 φeBfBgBgeJfFgFeIFf
10 f1otrg.h φHV
11 f1otrge.g φG𝒢TarskiE
12 10 elexd φHV
13 f1ocnv F:B1-1 ontoPF-1:P1-1 ontoB
14 f1of F-1:P1-1 ontoBF-1:PB
15 7 13 14 3syl φF-1:PB
16 15 ad6antr φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdF-1:PB
17 simpllr φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdcP
18 16 17 ffvelcdmd φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdF-1cB
19 simplr φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIddP
20 16 19 ffvelcdmd φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdF-1dB
21 simpr1 φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFyFxIc
22 7 ad3antrrr φxByBzBuBvBuxJvuyJzxuF:B1-1 ontoP
23 22 ad3antrrr φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdF:B1-1 ontoP
24 f1ocnvfv2 F:B1-1 ontoPcPFF-1c=c
25 23 17 24 syl2anc φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFF-1c=c
26 25 oveq2d φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFxIFF-1c=FxIc
27 21 26 eleqtrrd φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFyFxIFF-1c
28 8 ad5ant15 φxByBzBuBvBuxJvuyJzxueBfBeEf=FeDFf
29 28 ad5ant15 φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdeBfBeEf=FeDFf
30 9 ad5ant15 φxByBzBuBvBuxJvuyJzxueBfBgBgeJfFgFeIFf
31 30 ad5ant15 φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdeBfBgBgeJfFgFeIFf
32 simprl φxByBxB
33 32 ad2antrr φxByBzBuBvBuxJvuyJzxuxB
34 33 ad3antrrr φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdxB
35 simprr φxByByB
36 35 ad2antrr φxByBzBuBvBuxJvuyJzxuyB
37 36 ad3antrrr φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdyB
38 1 2 3 4 5 6 23 29 31 34 18 37 f1otrgitv φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdyxJF-1cFyFxIFF-1c
39 27 38 mpbird φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdyxJF-1c
40 simpr2 φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFzFxId
41 f1ocnvfv2 F:B1-1 ontoPdPFF-1d=d
42 23 19 41 syl2anc φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFF-1d=d
43 42 oveq2d φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFxIFF-1d=FxId
44 40 43 eleqtrrd φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFzFxIFF-1d
45 simplr1 φxByBzBuBvBuxJvuyJzxuzB
46 45 ad3antrrr φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdzB
47 1 2 3 4 5 6 23 29 31 34 20 46 f1otrgitv φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdzxJF-1dFzFxIFF-1d
48 44 47 mpbird φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdzxJF-1d
49 simpr3 φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFvcId
50 25 42 oveq12d φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFF-1cIFF-1d=cId
51 49 50 eleqtrrd φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdFvFF-1cIFF-1d
52 simplr3 φxByBzBuBvBuxJvuyJzxuvB
53 52 ad3antrrr φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdvB
54 1 2 3 4 5 6 23 29 31 18 20 53 f1otrgitv φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdvF-1cJF-1dFvFF-1cIFF-1d
55 51 54 mpbird φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdvF-1cJF-1d
56 oveq2 a=F-1cxJa=xJF-1c
57 56 eleq2d a=F-1cyxJayxJF-1c
58 oveq1 a=F-1caJb=F-1cJb
59 58 eleq2d a=F-1cvaJbvF-1cJb
60 57 59 3anbi13d a=F-1cyxJazxJbvaJbyxJF-1czxJbvF-1cJb
61 oveq2 b=F-1dxJb=xJF-1d
62 61 eleq2d b=F-1dzxJbzxJF-1d
63 oveq2 b=F-1dF-1cJb=F-1cJF-1d
64 63 eleq2d b=F-1dvF-1cJbvF-1cJF-1d
65 62 64 3anbi23d b=F-1dyxJF-1czxJbvF-1cJbyxJF-1czxJF-1dvF-1cJF-1d
66 60 65 rspc2ev F-1cBF-1dByxJF-1czxJF-1dvF-1cJF-1daBbByxJazxJbvaJb
67 18 20 39 48 55 66 syl113anc φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcIdaBbByxJazxJbvaJb
68 11 ad3antrrr φxByBzBuBvBuxJvuyJzxuG𝒢TarskiE
69 f1of F:B1-1 ontoPF:BP
70 7 69 syl φF:BP
71 70 adantr φxByBF:BP
72 71 32 ffvelcdmd φxByBFxP
73 72 ad2antrr φxByBzBuBvBuxJvuyJzxuFxP
74 71 35 ffvelcdmd φxByBFyP
75 74 ad2antrr φxByBzBuBvBuxJvuyJzxuFyP
76 70 ad3antrrr φxByBzBuBvBuxJvuyJzxuF:BP
77 76 45 ffvelcdmd φxByBzBuBvBuxJvuyJzxuFzP
78 simplr2 φxByBzBuBvBuxJvuyJzxuuB
79 76 78 ffvelcdmd φxByBzBuBvBuxJvuyJzxuFuP
80 76 52 ffvelcdmd φxByBzBuBvBuxJvuyJzxuFvP
81 simpr1 φxByBzBuBvBuxJvuyJzxuuxJv
82 1 2 3 4 5 6 22 28 30 33 52 78 f1otrgitv φxByBzBuBvBuxJvuyJzxuuxJvFuFxIFv
83 81 82 mpbid φxByBzBuBvBuxJvuyJzxuFuFxIFv
84 simpr2 φxByBzBuBvBuxJvuyJzxuuyJz
85 1 2 3 4 5 6 22 28 30 36 45 78 f1otrgitv φxByBzBuBvBuxJvuyJzxuuyJzFuFyIFz
86 84 85 mpbid φxByBzBuBvBuxJvuyJzxuFuFyIFz
87 simpr3 φxByBzBuBvBuxJvuyJzxuxu
88 dff1o6 F:B1-1 ontoPFFnBranF=PxBuBFx=Fux=u
89 88 simp3bi F:B1-1 ontoPxBuBFx=Fux=u
90 89 r19.21bi F:B1-1 ontoPxBuBFx=Fux=u
91 90 r19.21bi F:B1-1 ontoPxBuBFx=Fux=u
92 91 necon3d F:B1-1 ontoPxBuBxuFxFu
93 92 imp F:B1-1 ontoPxBuBxuFxFu
94 22 33 78 87 93 syl1111anc φxByBzBuBvBuxJvuyJzxuFxFu
95 1 2 3 68 73 75 77 79 80 83 86 94 axtgeucl φxByBzBuBvBuxJvuyJzxucPdPFyFxIcFzFxIdFvcId
96 67 95 r19.29vva φxByBzBuBvBuxJvuyJzxuaBbByxJazxJbvaJb
97 96 ex φxByBzBuBvBuxJvuyJzxuaBbByxJazxJbvaJb
98 97 ralrimivvva φxByBzBuBvBuxJvuyJzxuaBbByxJazxJbvaJb
99 98 ralrimivva φxByBzBuBvBuxJvuyJzxuaBbByxJazxJbvaJb
100 4 5 6 istrkge H𝒢TarskiEHVxByBzBuBvBuxJvuyJzxuaBbByxJazxJbvaJb
101 12 99 100 sylanbrc φH𝒢TarskiE