Metamath Proof Explorer


Theorem factwoffsmonot

Description: A factorial with offset is monotonely increasing. (Contributed by metakunt, 20-Apr-2024)

Ref Expression
Assertion factwoffsmonot X0Y0XYN0X+N!Y+N!

Proof

Step Hyp Ref Expression
1 oveq2 x=0X+x=X+0
2 1 fveq2d x=0X+x!=X+0!
3 oveq2 x=0Y+x=Y+0
4 3 fveq2d x=0Y+x!=Y+0!
5 2 4 breq12d x=0X+x!Y+x!X+0!Y+0!
6 oveq2 x=yX+x=X+y
7 6 fveq2d x=yX+x!=X+y!
8 oveq2 x=yY+x=Y+y
9 8 fveq2d x=yY+x!=Y+y!
10 7 9 breq12d x=yX+x!Y+x!X+y!Y+y!
11 oveq2 x=y+1X+x=X+y+1
12 11 fveq2d x=y+1X+x!=X+y+1!
13 oveq2 x=y+1Y+x=Y+y+1
14 13 fveq2d x=y+1Y+x!=Y+y+1!
15 12 14 breq12d x=y+1X+x!Y+x!X+y+1!Y+y+1!
16 oveq2 x=NX+x=X+N
17 16 fveq2d x=NX+x!=X+N!
18 oveq2 x=NY+x=Y+N
19 18 fveq2d x=NY+x!=Y+N!
20 17 19 breq12d x=NX+x!Y+x!X+N!Y+N!
21 facwordi X0Y0XYX!Y!
22 nn0cn X0X
23 addrid XX+0=X
24 22 23 syl X0X+0=X
25 24 fveq2d X0X+0!=X!
26 25 3ad2ant1 X0Y0XYX+0!=X!
27 nn0cn Y0Y
28 addrid YY+0=Y
29 27 28 syl Y0Y+0=Y
30 29 fveq2d Y0Y+0!=Y!
31 30 3ad2ant2 X0Y0XYY+0!=Y!
32 21 26 31 3brtr4d X0Y0XYX+0!Y+0!
33 nn0cn y0y
34 ax-1cn 1
35 addass Xy1X+y+1=X+y+1
36 34 35 mp3an3 XyX+y+1=X+y+1
37 22 33 36 syl2an X0y0X+y+1=X+y+1
38 37 fveq2d X0y0X+y+1!=X+y+1!
39 38 3ad2antl1 X0Y0XYy0X+y+1!=X+y+1!
40 39 adantr X0Y0XYy0X+y!Y+y!X+y+1!=X+y+1!
41 nn0addcl X0y0X+y0
42 41 3adant2 X0Y0y0X+y0
43 42 adantr X0Y0y0XYX+y0
44 nn0addcl Y0y0Y+y0
45 44 3adant1 X0Y0y0Y+y0
46 45 adantr X0Y0y0XYY+y0
47 nn0re X0X
48 nn0re Y0Y
49 nn0re y0y
50 leadd1 XYyXYX+yY+y
51 47 48 49 50 syl3an X0Y0y0XYX+yY+y
52 51 biimpa X0Y0y0XYX+yY+y
53 facwordi X+y0Y+y0X+yY+yX+y!Y+y!
54 43 46 52 53 syl3anc X0Y0y0XYX+y!Y+y!
55 54 3an1rs X0Y0XYy0X+y!Y+y!
56 nn0re X+y0X+y
57 43 56 syl X0Y0y0XYX+y
58 nn0re Y+y0Y+y
59 46 58 syl X0Y0y0XYY+y
60 57 59 jca X0Y0y0XYX+yY+y
61 1re 1
62 leadd1 X+yY+y1X+yY+yX+y+1Y+y+1
63 61 62 mp3an3 X+yY+yX+yY+yX+y+1Y+y+1
64 60 63 syl X0Y0y0XYX+yY+yX+y+1Y+y+1
65 52 64 mpbid X0Y0y0XYX+y+1Y+y+1
66 65 3an1rs X0Y0XYy0X+y+1Y+y+1
67 55 66 jca X0Y0XYy0X+y!Y+y!X+y+1Y+y+1
68 faccl X+y0X+y!
69 nnre X+y!X+y!
70 41 68 69 3syl X0y0X+y!
71 70 3adant2 X0Y0y0X+y!
72 nngt0 X+y!0<X+y!
73 41 68 72 3syl X0y00<X+y!
74 0re 0
75 ltle 0X+y!0<X+y!0X+y!
76 74 75 mpan X+y!0<X+y!0X+y!
77 70 76 syl X0y00<X+y!0X+y!
78 73 77 mpd X0y00X+y!
79 78 3adant2 X0Y0y00X+y!
80 71 79 jca X0Y0y0X+y!0X+y!
81 faccl Y+y0Y+y!
82 nnre Y+y!Y+y!
83 44 81 82 3syl Y0y0Y+y!
84 83 3adant1 X0Y0y0Y+y!
85 80 84 jca X0Y0y0X+y!0X+y!Y+y!
86 1nn0 10
87 nn0addcl X+y010X+y+10
88 86 87 mpan2 X+y0X+y+10
89 41 88 syl X0y0X+y+10
90 nn0re X+y+10X+y+1
91 89 90 syl X0y0X+y+1
92 91 3adant2 X0Y0y0X+y+1
93 nn0ge0 X+y+100X+y+1
94 89 93 syl X0y00X+y+1
95 94 3adant2 X0Y0y00X+y+1
96 92 95 jca X0Y0y0X+y+10X+y+1
97 nn0readdcl Y0y0Y+y
98 1red Y0y01
99 97 98 readdcld Y0y0Y+y+1
100 99 3adant1 X0Y0y0Y+y+1
101 96 100 jca X0Y0y0X+y+10X+y+1Y+y+1
102 85 101 jca X0Y0y0X+y!0X+y!Y+y!X+y+10X+y+1Y+y+1
103 lemul12a X+y!0X+y!Y+y!X+y+10X+y+1Y+y+1X+y!Y+y!X+y+1Y+y+1X+y!X+y+1Y+y!Y+y+1
104 102 103 syl X0Y0y0X+y!Y+y!X+y+1Y+y+1X+y!X+y+1Y+y!Y+y+1
105 104 3expa X0Y0y0X+y!Y+y!X+y+1Y+y+1X+y!X+y+1Y+y!Y+y+1
106 105 3adantl3 X0Y0XYy0X+y!Y+y!X+y+1Y+y+1X+y!X+y+1Y+y!Y+y+1
107 67 106 mpd X0Y0XYy0X+y!X+y+1Y+y!Y+y+1
108 facp1 X+y0X+y+1!=X+y!X+y+1
109 43 108 syl X0Y0y0XYX+y+1!=X+y!X+y+1
110 facp1 Y+y0Y+y+1!=Y+y!Y+y+1
111 46 110 syl X0Y0y0XYY+y+1!=Y+y!Y+y+1
112 109 111 jca X0Y0y0XYX+y+1!=X+y!X+y+1Y+y+1!=Y+y!Y+y+1
113 breq12 X+y+1!=X+y!X+y+1Y+y+1!=Y+y!Y+y+1X+y+1!Y+y+1!X+y!X+y+1Y+y!Y+y+1
114 112 113 syl X0Y0y0XYX+y+1!Y+y+1!X+y!X+y+1Y+y!Y+y+1
115 114 3an1rs X0Y0XYy0X+y+1!Y+y+1!X+y!X+y+1Y+y!Y+y+1
116 107 115 mpbird X0Y0XYy0X+y+1!Y+y+1!
117 116 adantr X0Y0XYy0X+y!Y+y!X+y+1!Y+y+1!
118 addass Yy1Y+y+1=Y+y+1
119 34 118 mp3an3 YyY+y+1=Y+y+1
120 27 33 119 syl2an Y0y0Y+y+1=Y+y+1
121 120 fveq2d Y0y0Y+y+1!=Y+y+1!
122 121 3ad2antl2 X0Y0XYy0Y+y+1!=Y+y+1!
123 122 adantr X0Y0XYy0X+y!Y+y!Y+y+1!=Y+y+1!
124 117 123 breqtrd X0Y0XYy0X+y!Y+y!X+y+1!Y+y+1!
125 40 124 eqbrtrrd X0Y0XYy0X+y!Y+y!X+y+1!Y+y+1!
126 5 10 15 20 32 125 nn0indd X0Y0XYN0X+N!Y+N!