Description: An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | facubnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | fac0 | |
|
3 | 1 2 | eqtrdi | |
4 | id | |
|
5 | 4 4 | oveq12d | |
6 | 0exp0e1 | |
|
7 | 5 6 | eqtrdi | |
8 | 3 7 | breq12d | |
9 | fveq2 | |
|
10 | id | |
|
11 | 10 10 | oveq12d | |
12 | 9 11 | breq12d | |
13 | fveq2 | |
|
14 | id | |
|
15 | 14 14 | oveq12d | |
16 | 13 15 | breq12d | |
17 | fveq2 | |
|
18 | id | |
|
19 | 18 18 | oveq12d | |
20 | 17 19 | breq12d | |
21 | 1le1 | |
|
22 | faccl | |
|
23 | 22 | adantr | |
24 | 23 | nnred | |
25 | nn0re | |
|
26 | 25 | adantr | |
27 | simpl | |
|
28 | 26 27 | reexpcld | |
29 | nn0p1nn | |
|
30 | 29 | adantr | |
31 | 30 | nnred | |
32 | 31 27 | reexpcld | |
33 | simpr | |
|
34 | nn0ge0 | |
|
35 | 34 | adantr | |
36 | 26 | lep1d | |
37 | leexp1a | |
|
38 | 26 31 27 35 36 37 | syl32anc | |
39 | 24 28 32 33 38 | letrd | |
40 | 30 | nngt0d | |
41 | lemul1 | |
|
42 | 24 32 31 40 41 | syl112anc | |
43 | 39 42 | mpbid | |
44 | facp1 | |
|
45 | 44 | adantr | |
46 | 30 | nncnd | |
47 | 46 27 | expp1d | |
48 | 43 45 47 | 3brtr4d | |
49 | 48 | ex | |
50 | 8 12 16 20 21 49 | nn0ind | |