| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  | 
						
							| 2 |  | fac0 |  | 
						
							| 3 | 1 2 | eqtrdi |  | 
						
							| 4 |  | id |  | 
						
							| 5 | 4 4 | oveq12d |  | 
						
							| 6 |  | 0exp0e1 |  | 
						
							| 7 | 5 6 | eqtrdi |  | 
						
							| 8 | 3 7 | breq12d |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 |  | id |  | 
						
							| 11 | 10 10 | oveq12d |  | 
						
							| 12 | 9 11 | breq12d |  | 
						
							| 13 |  | fveq2 |  | 
						
							| 14 |  | id |  | 
						
							| 15 | 14 14 | oveq12d |  | 
						
							| 16 | 13 15 | breq12d |  | 
						
							| 17 |  | fveq2 |  | 
						
							| 18 |  | id |  | 
						
							| 19 | 18 18 | oveq12d |  | 
						
							| 20 | 17 19 | breq12d |  | 
						
							| 21 |  | 1le1 |  | 
						
							| 22 |  | faccl |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 23 | nnred |  | 
						
							| 25 |  | nn0re |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | simpl |  | 
						
							| 28 | 26 27 | reexpcld |  | 
						
							| 29 |  | nn0p1nn |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 30 | nnred |  | 
						
							| 32 | 31 27 | reexpcld |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 |  | nn0ge0 |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 26 | lep1d |  | 
						
							| 37 |  | leexp1a |  | 
						
							| 38 | 26 31 27 35 36 37 | syl32anc |  | 
						
							| 39 | 24 28 32 33 38 | letrd |  | 
						
							| 40 | 30 | nngt0d |  | 
						
							| 41 |  | lemul1 |  | 
						
							| 42 | 24 32 31 40 41 | syl112anc |  | 
						
							| 43 | 39 42 | mpbid |  | 
						
							| 44 |  | facp1 |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 30 | nncnd |  | 
						
							| 47 | 46 27 | expp1d |  | 
						
							| 48 | 43 45 47 | 3brtr4d |  | 
						
							| 49 | 48 | ex |  | 
						
							| 50 | 8 12 16 20 21 49 | nn0ind |  |