| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fidomndrng.b |
|
| 2 |
|
fidomndrng.z |
|
| 3 |
|
fidomndrng.o |
|
| 4 |
|
fidomndrng.d |
|
| 5 |
|
fidomndrng.t |
|
| 6 |
|
fidomndrng.r |
|
| 7 |
|
fidomndrng.x |
|
| 8 |
|
fidomndrng.a |
|
| 9 |
|
fidomndrng.f |
|
| 10 |
8
|
eldifad |
|
| 11 |
|
eldifsni |
|
| 12 |
8 11
|
syl |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
oveq1 |
|
| 15 |
|
ovex |
|
| 16 |
14 9 15
|
fvmpt |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
eqeq1d |
|
| 19 |
6
|
adantr |
|
| 20 |
|
simpr |
|
| 21 |
10
|
adantr |
|
| 22 |
1 5 2
|
domneq0 |
|
| 23 |
19 20 21 22
|
syl3anc |
|
| 24 |
18 23
|
bitrd |
|
| 25 |
24
|
biimpa |
|
| 26 |
25
|
ord |
|
| 27 |
26
|
necon1ad |
|
| 28 |
13 27
|
mpd |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
|
domnring |
|
| 32 |
6 31
|
syl |
|
| 33 |
1 5
|
ringrghm |
|
| 34 |
32 10 33
|
syl2anc |
|
| 35 |
9 34
|
eqeltrid |
|
| 36 |
1 1 2 2
|
ghmf1 |
|
| 37 |
35 36
|
syl |
|
| 38 |
30 37
|
mpbird |
|
| 39 |
|
enreffi |
|
| 40 |
7 39
|
syl |
|
| 41 |
|
f1finf1o |
|
| 42 |
40 7 41
|
syl2anc |
|
| 43 |
38 42
|
mpbid |
|
| 44 |
|
f1ocnv |
|
| 45 |
|
f1of |
|
| 46 |
43 44 45
|
3syl |
|
| 47 |
1 3
|
ringidcl |
|
| 48 |
32 47
|
syl |
|
| 49 |
46 48
|
ffvelcdmd |
|
| 50 |
1 4 5
|
dvdsrmul |
|
| 51 |
10 49 50
|
syl2anc |
|
| 52 |
|
oveq1 |
|
| 53 |
14
|
cbvmptv |
|
| 54 |
9 53
|
eqtri |
|
| 55 |
|
ovex |
|
| 56 |
52 54 55
|
fvmpt |
|
| 57 |
49 56
|
syl |
|
| 58 |
|
f1ocnvfv2 |
|
| 59 |
43 48 58
|
syl2anc |
|
| 60 |
57 59
|
eqtr3d |
|
| 61 |
51 60
|
breqtrd |
|