Metamath Proof Explorer


Theorem fidomndrnglem

Description: Lemma for fidomndrng . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses fidomndrng.b B=BaseR
fidomndrng.z 0˙=0R
fidomndrng.o 1˙=1R
fidomndrng.d ˙=rR
fidomndrng.t ·˙=R
fidomndrng.r φRDomn
fidomndrng.x φBFin
fidomndrng.a φAB0˙
fidomndrng.f F=xBx·˙A
Assertion fidomndrnglem φA˙1˙

Proof

Step Hyp Ref Expression
1 fidomndrng.b B=BaseR
2 fidomndrng.z 0˙=0R
3 fidomndrng.o 1˙=1R
4 fidomndrng.d ˙=rR
5 fidomndrng.t ·˙=R
6 fidomndrng.r φRDomn
7 fidomndrng.x φBFin
8 fidomndrng.a φAB0˙
9 fidomndrng.f F=xBx·˙A
10 8 eldifad φAB
11 eldifsni AB0˙A0˙
12 8 11 syl φA0˙
13 12 ad2antrr φyBFy=0˙A0˙
14 oveq1 x=yx·˙A=y·˙A
15 ovex y·˙AV
16 14 9 15 fvmpt yBFy=y·˙A
17 16 adantl φyBFy=y·˙A
18 17 eqeq1d φyBFy=0˙y·˙A=0˙
19 6 adantr φyBRDomn
20 simpr φyByB
21 10 adantr φyBAB
22 1 5 2 domneq0 RDomnyBABy·˙A=0˙y=0˙A=0˙
23 19 20 21 22 syl3anc φyBy·˙A=0˙y=0˙A=0˙
24 18 23 bitrd φyBFy=0˙y=0˙A=0˙
25 24 biimpa φyBFy=0˙y=0˙A=0˙
26 25 ord φyBFy=0˙¬y=0˙A=0˙
27 26 necon1ad φyBFy=0˙A0˙y=0˙
28 13 27 mpd φyBFy=0˙y=0˙
29 28 ex φyBFy=0˙y=0˙
30 29 ralrimiva φyBFy=0˙y=0˙
31 domnring RDomnRRing
32 6 31 syl φRRing
33 1 5 ringrghm RRingABxBx·˙ARGrpHomR
34 32 10 33 syl2anc φxBx·˙ARGrpHomR
35 9 34 eqeltrid φFRGrpHomR
36 1 1 2 2 ghmf1 FRGrpHomRF:B1-1ByBFy=0˙y=0˙
37 35 36 syl φF:B1-1ByBFy=0˙y=0˙
38 30 37 mpbird φF:B1-1B
39 enrefg BFinBB
40 7 39 syl φBB
41 f1finf1o BBBFinF:B1-1BF:B1-1 ontoB
42 40 7 41 syl2anc φF:B1-1BF:B1-1 ontoB
43 38 42 mpbid φF:B1-1 ontoB
44 f1ocnv F:B1-1 ontoBF-1:B1-1 ontoB
45 f1of F-1:B1-1 ontoBF-1:BB
46 43 44 45 3syl φF-1:BB
47 1 3 ringidcl RRing1˙B
48 32 47 syl φ1˙B
49 46 48 ffvelcdmd φF-11˙B
50 1 4 5 dvdsrmul ABF-11˙BA˙F-11˙·˙A
51 10 49 50 syl2anc φA˙F-11˙·˙A
52 oveq1 y=F-11˙y·˙A=F-11˙·˙A
53 14 cbvmptv xBx·˙A=yBy·˙A
54 9 53 eqtri F=yBy·˙A
55 ovex F-11˙·˙AV
56 52 54 55 fvmpt F-11˙BFF-11˙=F-11˙·˙A
57 49 56 syl φFF-11˙=F-11˙·˙A
58 f1ocnvfv2 F:B1-1 ontoB1˙BFF-11˙=1˙
59 43 48 58 syl2anc φFF-11˙=1˙
60 57 59 eqtr3d φF-11˙·˙A=1˙
61 51 60 breqtrd φA˙1˙