Description: Lemma for fidomndrng . (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fidomndrng.b | |
|
fidomndrng.z | |
||
fidomndrng.o | |
||
fidomndrng.d | |
||
fidomndrng.t | |
||
fidomndrng.r | |
||
fidomndrng.x | |
||
fidomndrng.a | |
||
fidomndrng.f | |
||
Assertion | fidomndrnglem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidomndrng.b | |
|
2 | fidomndrng.z | |
|
3 | fidomndrng.o | |
|
4 | fidomndrng.d | |
|
5 | fidomndrng.t | |
|
6 | fidomndrng.r | |
|
7 | fidomndrng.x | |
|
8 | fidomndrng.a | |
|
9 | fidomndrng.f | |
|
10 | 8 | eldifad | |
11 | eldifsni | |
|
12 | 8 11 | syl | |
13 | 12 | ad2antrr | |
14 | oveq1 | |
|
15 | ovex | |
|
16 | 14 9 15 | fvmpt | |
17 | 16 | adantl | |
18 | 17 | eqeq1d | |
19 | 6 | adantr | |
20 | simpr | |
|
21 | 10 | adantr | |
22 | 1 5 2 | domneq0 | |
23 | 19 20 21 22 | syl3anc | |
24 | 18 23 | bitrd | |
25 | 24 | biimpa | |
26 | 25 | ord | |
27 | 26 | necon1ad | |
28 | 13 27 | mpd | |
29 | 28 | ex | |
30 | 29 | ralrimiva | |
31 | domnring | |
|
32 | 6 31 | syl | |
33 | 1 5 | ringrghm | |
34 | 32 10 33 | syl2anc | |
35 | 9 34 | eqeltrid | |
36 | 1 1 2 2 | ghmf1 | |
37 | 35 36 | syl | |
38 | 30 37 | mpbird | |
39 | enrefg | |
|
40 | 7 39 | syl | |
41 | f1finf1o | |
|
42 | 40 7 41 | syl2anc | |
43 | 38 42 | mpbid | |
44 | f1ocnv | |
|
45 | f1of | |
|
46 | 43 44 45 | 3syl | |
47 | 1 3 | ringidcl | |
48 | 32 47 | syl | |
49 | 46 48 | ffvelcdmd | |
50 | 1 4 5 | dvdsrmul | |
51 | 10 49 50 | syl2anc | |
52 | oveq1 | |
|
53 | 14 | cbvmptv | |
54 | 9 53 | eqtri | |
55 | ovex | |
|
56 | 52 54 55 | fvmpt | |
57 | 49 56 | syl | |
58 | f1ocnvfv2 | |
|
59 | 43 48 58 | syl2anc | |
60 | 57 59 | eqtr3d | |
61 | 51 60 | breqtrd | |