Metamath Proof Explorer


Theorem fin23lem41

Description: Lemma for fin23 . A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypothesis fin23lem40.f F=g|a𝒫gωxωasucxaxranarana
Assertion fin23lem41 AFAFinIII

Proof

Step Hyp Ref Expression
1 fin23lem40.f F=g|a𝒫gωxωasucxaxranarana
2 brdomi ω𝒫Abb:ω1-1𝒫A
3 1 fin23lem33 AFcdd:ω1-1VrandAcd:ω1-1Vrancdrand
4 3 adantl b:ω1-1𝒫AAFcdd:ω1-1VrandAcd:ω1-1Vrancdrand
5 ssv 𝒫AV
6 f1ss b:ω1-1𝒫A𝒫AVb:ω1-1V
7 5 6 mpan2 b:ω1-1𝒫Ab:ω1-1V
8 7 ad2antrr b:ω1-1𝒫AAFdd:ω1-1VrandAcd:ω1-1Vrancdrandb:ω1-1V
9 f1f b:ω1-1𝒫Ab:ω𝒫A
10 frn b:ω𝒫Aranb𝒫A
11 uniss ranb𝒫Aranb𝒫A
12 9 10 11 3syl b:ω1-1𝒫Aranb𝒫A
13 unipw 𝒫A=A
14 12 13 sseqtrdi b:ω1-1𝒫AranbA
15 14 ad2antrr b:ω1-1𝒫AAFdd:ω1-1VrandAcd:ω1-1VrancdrandranbA
16 f1eq1 d=ed:ω1-1Ve:ω1-1V
17 rneq d=erand=rane
18 17 unieqd d=erand=rane
19 18 sseq1d d=erandAraneA
20 16 19 anbi12d d=ed:ω1-1VrandAe:ω1-1VraneA
21 fveq2 d=ecd=ce
22 f1eq1 cd=cecd:ω1-1Vce:ω1-1V
23 21 22 syl d=ecd:ω1-1Vce:ω1-1V
24 21 rneqd d=erancd=rance
25 24 unieqd d=erancd=rance
26 25 18 psseq12d d=erancdrandrancerane
27 23 26 anbi12d d=ecd:ω1-1Vrancdrandce:ω1-1Vrancerane
28 20 27 imbi12d d=ed:ω1-1VrandAcd:ω1-1Vrancdrande:ω1-1VraneAce:ω1-1Vrancerane
29 28 cbvalvw dd:ω1-1VrandAcd:ω1-1Vrancdrandee:ω1-1VraneAce:ω1-1Vrancerane
30 29 biimpi dd:ω1-1VrandAcd:ω1-1Vrancdrandee:ω1-1VraneAce:ω1-1Vrancerane
31 30 adantl b:ω1-1𝒫AAFdd:ω1-1VrandAcd:ω1-1Vrancdrandee:ω1-1VraneAce:ω1-1Vrancerane
32 eqid reccbω=reccbω
33 1 8 15 31 32 fin23lem39 b:ω1-1𝒫AAFdd:ω1-1VrandAcd:ω1-1Vrancdrand¬AF
34 4 33 exlimddv b:ω1-1𝒫AAF¬AF
35 34 pm2.01da b:ω1-1𝒫A¬AF
36 35 exlimiv bb:ω1-1𝒫A¬AF
37 2 36 syl ω𝒫A¬AF
38 37 con2i AF¬ω𝒫A
39 pwexg AF𝒫AV
40 isfin4-2 𝒫AV𝒫AFinIV¬ω𝒫A
41 39 40 syl AF𝒫AFinIV¬ω𝒫A
42 38 41 mpbird AF𝒫AFinIV
43 isfin3 AFinIII𝒫AFinIV
44 42 43 sylibr AFAFinIII