Description: Lemma for fin23 . A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fin23lem40.f | |
|
Assertion | fin23lem41 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem40.f | |
|
2 | brdomi | |
|
3 | 1 | fin23lem33 | |
4 | 3 | adantl | |
5 | ssv | |
|
6 | f1ss | |
|
7 | 5 6 | mpan2 | |
8 | 7 | ad2antrr | |
9 | f1f | |
|
10 | frn | |
|
11 | uniss | |
|
12 | 9 10 11 | 3syl | |
13 | unipw | |
|
14 | 12 13 | sseqtrdi | |
15 | 14 | ad2antrr | |
16 | f1eq1 | |
|
17 | rneq | |
|
18 | 17 | unieqd | |
19 | 18 | sseq1d | |
20 | 16 19 | anbi12d | |
21 | fveq2 | |
|
22 | f1eq1 | |
|
23 | 21 22 | syl | |
24 | 21 | rneqd | |
25 | 24 | unieqd | |
26 | 25 18 | psseq12d | |
27 | 23 26 | anbi12d | |
28 | 20 27 | imbi12d | |
29 | 28 | cbvalvw | |
30 | 29 | biimpi | |
31 | 30 | adantl | |
32 | eqid | |
|
33 | 1 8 15 31 32 | fin23lem39 | |
34 | 4 33 | exlimddv | |
35 | 34 | pm2.01da | |
36 | 35 | exlimiv | |
37 | 2 36 | syl | |
38 | 37 | con2i | |
39 | pwexg | |
|
40 | isfin4-2 | |
|
41 | 39 40 | syl | |
42 | 38 41 | mpbird | |
43 | isfin3 | |
|
44 | 42 43 | sylibr | |