| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
simpl |
|
| 3 |
|
fldextfld2 |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
fldextfld2 |
|
| 6 |
1 5
|
syl |
|
| 7 |
|
brfldext |
|
| 8 |
4 6 7
|
syl2anc |
|
| 9 |
1 8
|
mpbid |
|
| 10 |
9
|
simpld |
|
| 11 |
|
fldextfld1 |
|
| 12 |
2 11
|
syl |
|
| 13 |
|
brfldext |
|
| 14 |
12 4 13
|
syl2anc |
|
| 15 |
2 14
|
mpbid |
|
| 16 |
15
|
simpld |
|
| 17 |
16
|
oveq1d |
|
| 18 |
|
fvex |
|
| 19 |
|
fvex |
|
| 20 |
|
ressress |
|
| 21 |
18 19 20
|
mp2an |
|
| 22 |
17 21
|
eqtrdi |
|
| 23 |
|
incom |
|
| 24 |
9
|
simprd |
|
| 25 |
|
eqid |
|
| 26 |
25
|
subrgss |
|
| 27 |
24 26
|
syl |
|
| 28 |
|
dfss2 |
|
| 29 |
27 28
|
sylib |
|
| 30 |
23 29
|
eqtr3id |
|
| 31 |
30
|
oveq2d |
|
| 32 |
10 22 31
|
3eqtrd |
|
| 33 |
15
|
simprd |
|
| 34 |
16
|
fveq2d |
|
| 35 |
24 34
|
eleqtrd |
|
| 36 |
|
eqid |
|
| 37 |
36
|
subsubrg |
|
| 38 |
37
|
simprbda |
|
| 39 |
33 35 38
|
syl2anc |
|
| 40 |
|
brfldext |
|
| 41 |
12 6 40
|
syl2anc |
|
| 42 |
32 39 41
|
mpbir2and |
|