Metamath Proof Explorer


Theorem fldexttr

Description: Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion fldexttr E/FldExtFF/FldExtKE/FldExtK

Proof

Step Hyp Ref Expression
1 simpr E/FldExtFF/FldExtKF/FldExtK
2 simpl E/FldExtFF/FldExtKE/FldExtF
3 fldextfld2 E/FldExtFFField
4 2 3 syl E/FldExtFF/FldExtKFField
5 fldextfld2 F/FldExtKKField
6 1 5 syl E/FldExtFF/FldExtKKField
7 brfldext FFieldKFieldF/FldExtKK=F𝑠BaseKBaseKSubRingF
8 4 6 7 syl2anc E/FldExtFF/FldExtKF/FldExtKK=F𝑠BaseKBaseKSubRingF
9 1 8 mpbid E/FldExtFF/FldExtKK=F𝑠BaseKBaseKSubRingF
10 9 simpld E/FldExtFF/FldExtKK=F𝑠BaseK
11 fldextfld1 E/FldExtFEField
12 2 11 syl E/FldExtFF/FldExtKEField
13 brfldext EFieldFFieldE/FldExtFF=E𝑠BaseFBaseFSubRingE
14 12 4 13 syl2anc E/FldExtFF/FldExtKE/FldExtFF=E𝑠BaseFBaseFSubRingE
15 2 14 mpbid E/FldExtFF/FldExtKF=E𝑠BaseFBaseFSubRingE
16 15 simpld E/FldExtFF/FldExtKF=E𝑠BaseF
17 16 oveq1d E/FldExtFF/FldExtKF𝑠BaseK=E𝑠BaseF𝑠BaseK
18 fvex BaseFV
19 fvex BaseKV
20 ressress BaseFVBaseKVE𝑠BaseF𝑠BaseK=E𝑠BaseFBaseK
21 18 19 20 mp2an E𝑠BaseF𝑠BaseK=E𝑠BaseFBaseK
22 17 21 eqtrdi E/FldExtFF/FldExtKF𝑠BaseK=E𝑠BaseFBaseK
23 incom BaseKBaseF=BaseFBaseK
24 9 simprd E/FldExtFF/FldExtKBaseKSubRingF
25 eqid BaseF=BaseF
26 25 subrgss BaseKSubRingFBaseKBaseF
27 24 26 syl E/FldExtFF/FldExtKBaseKBaseF
28 df-ss BaseKBaseFBaseKBaseF=BaseK
29 27 28 sylib E/FldExtFF/FldExtKBaseKBaseF=BaseK
30 23 29 eqtr3id E/FldExtFF/FldExtKBaseFBaseK=BaseK
31 30 oveq2d E/FldExtFF/FldExtKE𝑠BaseFBaseK=E𝑠BaseK
32 10 22 31 3eqtrd E/FldExtFF/FldExtKK=E𝑠BaseK
33 15 simprd E/FldExtFF/FldExtKBaseFSubRingE
34 16 fveq2d E/FldExtFF/FldExtKSubRingF=SubRingE𝑠BaseF
35 24 34 eleqtrd E/FldExtFF/FldExtKBaseKSubRingE𝑠BaseF
36 eqid E𝑠BaseF=E𝑠BaseF
37 36 subsubrg BaseFSubRingEBaseKSubRingE𝑠BaseFBaseKSubRingEBaseKBaseF
38 37 simprbda BaseFSubRingEBaseKSubRingE𝑠BaseFBaseKSubRingE
39 33 35 38 syl2anc E/FldExtFF/FldExtKBaseKSubRingE
40 brfldext EFieldKFieldE/FldExtKK=E𝑠BaseKBaseKSubRingE
41 12 6 40 syl2anc E/FldExtFF/FldExtKE/FldExtKK=E𝑠BaseKBaseKSubRingE
42 32 39 41 mpbir2and E/FldExtFF/FldExtKE/FldExtK