Description: Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | fldexttr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | simpl | |
|
3 | fldextfld2 | |
|
4 | 2 3 | syl | |
5 | fldextfld2 | |
|
6 | 1 5 | syl | |
7 | brfldext | |
|
8 | 4 6 7 | syl2anc | |
9 | 1 8 | mpbid | |
10 | 9 | simpld | |
11 | fldextfld1 | |
|
12 | 2 11 | syl | |
13 | brfldext | |
|
14 | 12 4 13 | syl2anc | |
15 | 2 14 | mpbid | |
16 | 15 | simpld | |
17 | 16 | oveq1d | |
18 | fvex | |
|
19 | fvex | |
|
20 | ressress | |
|
21 | 18 19 20 | mp2an | |
22 | 17 21 | eqtrdi | |
23 | incom | |
|
24 | 9 | simprd | |
25 | eqid | |
|
26 | 25 | subrgss | |
27 | 24 26 | syl | |
28 | df-ss | |
|
29 | 27 28 | sylib | |
30 | 23 29 | eqtr3id | |
31 | 30 | oveq2d | |
32 | 10 22 31 | 3eqtrd | |
33 | 15 | simprd | |
34 | 16 | fveq2d | |
35 | 24 34 | eleqtrd | |
36 | eqid | |
|
37 | 36 | subsubrg | |
38 | 37 | simprbda | |
39 | 33 35 38 | syl2anc | |
40 | brfldext | |
|
41 | 12 6 40 | syl2anc | |
42 | 32 39 41 | mpbir2and | |