Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
simpl |
|
3 |
|
fldextfld2 |
|
4 |
2 3
|
syl |
|
5 |
|
fldextfld2 |
|
6 |
1 5
|
syl |
|
7 |
|
brfldext |
|
8 |
4 6 7
|
syl2anc |
|
9 |
1 8
|
mpbid |
|
10 |
9
|
simpld |
|
11 |
|
fldextfld1 |
|
12 |
2 11
|
syl |
|
13 |
|
brfldext |
|
14 |
12 4 13
|
syl2anc |
|
15 |
2 14
|
mpbid |
|
16 |
15
|
simpld |
|
17 |
16
|
oveq1d |
|
18 |
|
fvex |
|
19 |
|
fvex |
|
20 |
|
ressress |
|
21 |
18 19 20
|
mp2an |
|
22 |
17 21
|
eqtrdi |
|
23 |
|
incom |
|
24 |
9
|
simprd |
|
25 |
|
eqid |
|
26 |
25
|
subrgss |
|
27 |
24 26
|
syl |
|
28 |
|
df-ss |
|
29 |
27 28
|
sylib |
|
30 |
23 29
|
eqtr3id |
|
31 |
30
|
oveq2d |
|
32 |
10 22 31
|
3eqtrd |
|
33 |
15
|
simprd |
|
34 |
16
|
fveq2d |
|
35 |
24 34
|
eleqtrd |
|
36 |
|
eqid |
|
37 |
36
|
subsubrg |
|
38 |
37
|
simprbda |
|
39 |
33 35 38
|
syl2anc |
|
40 |
|
brfldext |
|
41 |
12 6 40
|
syl2anc |
|
42 |
32 39 41
|
mpbir2and |
|