Metamath Proof Explorer


Theorem fldexttr

Description: Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion fldexttr E /FldExt F F /FldExt K E /FldExt K

Proof

Step Hyp Ref Expression
1 simpr E /FldExt F F /FldExt K F /FldExt K
2 simpl E /FldExt F F /FldExt K E /FldExt F
3 fldextfld2 E /FldExt F F Field
4 2 3 syl E /FldExt F F /FldExt K F Field
5 fldextfld2 F /FldExt K K Field
6 1 5 syl E /FldExt F F /FldExt K K Field
7 brfldext F Field K Field F /FldExt K K = F 𝑠 Base K Base K SubRing F
8 4 6 7 syl2anc E /FldExt F F /FldExt K F /FldExt K K = F 𝑠 Base K Base K SubRing F
9 1 8 mpbid E /FldExt F F /FldExt K K = F 𝑠 Base K Base K SubRing F
10 9 simpld E /FldExt F F /FldExt K K = F 𝑠 Base K
11 fldextfld1 E /FldExt F E Field
12 2 11 syl E /FldExt F F /FldExt K E Field
13 brfldext E Field F Field E /FldExt F F = E 𝑠 Base F Base F SubRing E
14 12 4 13 syl2anc E /FldExt F F /FldExt K E /FldExt F F = E 𝑠 Base F Base F SubRing E
15 2 14 mpbid E /FldExt F F /FldExt K F = E 𝑠 Base F Base F SubRing E
16 15 simpld E /FldExt F F /FldExt K F = E 𝑠 Base F
17 16 oveq1d E /FldExt F F /FldExt K F 𝑠 Base K = E 𝑠 Base F 𝑠 Base K
18 fvex Base F V
19 fvex Base K V
20 ressress Base F V Base K V E 𝑠 Base F 𝑠 Base K = E 𝑠 Base F Base K
21 18 19 20 mp2an E 𝑠 Base F 𝑠 Base K = E 𝑠 Base F Base K
22 17 21 syl6eq E /FldExt F F /FldExt K F 𝑠 Base K = E 𝑠 Base F Base K
23 incom Base K Base F = Base F Base K
24 9 simprd E /FldExt F F /FldExt K Base K SubRing F
25 eqid Base F = Base F
26 25 subrgss Base K SubRing F Base K Base F
27 24 26 syl E /FldExt F F /FldExt K Base K Base F
28 df-ss Base K Base F Base K Base F = Base K
29 27 28 sylib E /FldExt F F /FldExt K Base K Base F = Base K
30 23 29 syl5eqr E /FldExt F F /FldExt K Base F Base K = Base K
31 30 oveq2d E /FldExt F F /FldExt K E 𝑠 Base F Base K = E 𝑠 Base K
32 10 22 31 3eqtrd E /FldExt F F /FldExt K K = E 𝑠 Base K
33 15 simprd E /FldExt F F /FldExt K Base F SubRing E
34 16 fveq2d E /FldExt F F /FldExt K SubRing F = SubRing E 𝑠 Base F
35 24 34 eleqtrd E /FldExt F F /FldExt K Base K SubRing E 𝑠 Base F
36 eqid E 𝑠 Base F = E 𝑠 Base F
37 36 subsubrg Base F SubRing E Base K SubRing E 𝑠 Base F Base K SubRing E Base K Base F
38 37 simprbda Base F SubRing E Base K SubRing E 𝑠 Base F Base K SubRing E
39 33 35 38 syl2anc E /FldExt F F /FldExt K Base K SubRing E
40 brfldext E Field K Field E /FldExt K K = E 𝑠 Base K Base K SubRing E
41 12 6 40 syl2anc E /FldExt F F /FldExt K E /FldExt K K = E 𝑠 Base K Base K SubRing E
42 32 39 41 mpbir2and E /FldExt F F /FldExt K E /FldExt K