Metamath Proof Explorer


Theorem fllogbd

Description: A real number is between the base of a logarithm to the power of the floor of the logarithm of the number and the base of the logarithm to the power of the floor of the logarithm of the number plus one. (Contributed by AV, 23-May-2020)

Ref Expression
Hypotheses fllogbd.b φB2
fllogbd.x φX+
fllogbd.e E=logBX
Assertion fllogbd φBEXX<BE+1

Proof

Step Hyp Ref Expression
1 fllogbd.b φB2
2 fllogbd.x φX+
3 fllogbd.e E=logBX
4 relogbzcl B2X+logBX
5 1 2 4 syl2anc φlogBX
6 flle logBXlogBXlogBX
7 5 6 syl φlogBXlogBX
8 3 7 eqbrtrid φElogBX
9 eluzelz B2B
10 1 9 syl φB
11 10 zred φB
12 eluz2b1 B2B1<B
13 12 simprbi B21<B
14 1 13 syl φ1<B
15 5 flcld φlogBX
16 3 15 eqeltrid φE
17 16 zred φE
18 11 14 17 5 cxpled φElogBXBEBlogBX
19 8 18 mpbid φBEBlogBX
20 10 zcnd φB
21 eluz2nn B2B
22 1 21 syl φB
23 22 nnne0d φB0
24 20 23 16 cxpexpzd φBE=BE
25 eluz2cnn0n1 B2B01
26 1 25 syl φB01
27 rpcnne0 X+XX0
28 eldifsn X0XX0
29 27 28 sylibr X+X0
30 2 29 syl φX0
31 cxplogb B01X0BlogBX=X
32 26 30 31 syl2anc φBlogBX=X
33 19 24 32 3brtr3d φBEX
34 flltp1 logBXlogBX<logBX+1
35 5 34 syl φlogBX<logBX+1
36 3 a1i φE=logBX
37 36 oveq1d φE+1=logBX+1
38 35 37 breqtrrd φlogBX<E+1
39 16 peano2zd φE+1
40 39 zred φE+1
41 11 14 5 40 cxpltd φlogBX<E+1BlogBX<BE+1
42 38 41 mpbid φBlogBX<BE+1
43 20 23 39 cxpexpzd φBE+1=BE+1
44 42 32 43 3brtr3d φX<BE+1
45 33 44 jca φBEXX<BE+1