Description: The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmcncfil.1 | |
|
fmcncfil.2 | |
||
Assertion | fmcncfil | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmcncfil.1 | |
|
2 | fmcncfil.2 | |
|
3 | simpl2 | |
|
4 | simpl1 | |
|
5 | 1 | cmetcvg | |
6 | n0 | |
|
7 | 5 6 | sylib | |
8 | 4 7 | sylancom | |
9 | cmetmet | |
|
10 | metxmet | |
|
11 | 4 9 10 | 3syl | |
12 | cfilfil | |
|
13 | 11 12 | sylancom | |
14 | 1 | mopntopon | |
15 | 11 14 | syl | |
16 | 2 | mopntopon | |
17 | 3 16 | syl | |
18 | simpl3 | |
|
19 | cnflf | |
|
20 | 19 | simplbda | |
21 | 15 17 18 20 | syl21anc | |
22 | oveq2 | |
|
23 | oveq2 | |
|
24 | 23 | fveq1d | |
25 | 24 | eleq2d | |
26 | 22 25 | raleqbidv | |
27 | 26 | rspcv | |
28 | 13 21 27 | sylc | |
29 | df-ral | |
|
30 | 28 29 | sylib | |
31 | 19.29r | |
|
32 | pm3.35 | |
|
33 | 32 | eximi | |
34 | 31 33 | syl | |
35 | 8 30 34 | syl2anc | |
36 | 1 2 | metcn | |
37 | 36 | biimpa | |
38 | 11 3 18 37 | syl21anc | |
39 | 38 | simpld | |
40 | flfval | |
|
41 | 17 13 39 40 | syl3anc | |
42 | 41 | eleq2d | |
43 | 42 | exbidv | |
44 | 35 43 | mpbid | |
45 | 2 | flimcfil | |
46 | 45 | ex | |
47 | 46 | exlimdv | |
48 | 3 44 47 | sylc | |