Metamath Proof Explorer


Theorem fmcncfil

Description: The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017)

Ref Expression
Hypotheses fmcncfil.1 J=MetOpenD
fmcncfil.2 K=MetOpenE
Assertion fmcncfil DCMetXE∞MetYFJCnKBCauFilDYFilMapFBCauFilE

Proof

Step Hyp Ref Expression
1 fmcncfil.1 J=MetOpenD
2 fmcncfil.2 K=MetOpenE
3 simpl2 DCMetXE∞MetYFJCnKBCauFilDE∞MetY
4 simpl1 DCMetXE∞MetYFJCnKBCauFilDDCMetX
5 1 cmetcvg DCMetXBCauFilDJfLimB
6 n0 JfLimBxxJfLimB
7 5 6 sylib DCMetXBCauFilDxxJfLimB
8 4 7 sylancom DCMetXE∞MetYFJCnKBCauFilDxxJfLimB
9 cmetmet DCMetXDMetX
10 metxmet DMetXD∞MetX
11 4 9 10 3syl DCMetXE∞MetYFJCnKBCauFilDD∞MetX
12 cfilfil D∞MetXBCauFilDBFilX
13 11 12 sylancom DCMetXE∞MetYFJCnKBCauFilDBFilX
14 1 mopntopon D∞MetXJTopOnX
15 11 14 syl DCMetXE∞MetYFJCnKBCauFilDJTopOnX
16 2 mopntopon E∞MetYKTopOnY
17 3 16 syl DCMetXE∞MetYFJCnKBCauFilDKTopOnY
18 simpl3 DCMetXE∞MetYFJCnKBCauFilDFJCnK
19 cnflf JTopOnXKTopOnYFJCnKF:XYbFilXxJfLimbFxKfLimfbF
20 19 simplbda JTopOnXKTopOnYFJCnKbFilXxJfLimbFxKfLimfbF
21 15 17 18 20 syl21anc DCMetXE∞MetYFJCnKBCauFilDbFilXxJfLimbFxKfLimfbF
22 oveq2 b=BJfLimb=JfLimB
23 oveq2 b=BKfLimfb=KfLimfB
24 23 fveq1d b=BKfLimfbF=KfLimfBF
25 24 eleq2d b=BFxKfLimfbFFxKfLimfBF
26 22 25 raleqbidv b=BxJfLimbFxKfLimfbFxJfLimBFxKfLimfBF
27 26 rspcv BFilXbFilXxJfLimbFxKfLimfbFxJfLimBFxKfLimfBF
28 13 21 27 sylc DCMetXE∞MetYFJCnKBCauFilDxJfLimBFxKfLimfBF
29 df-ral xJfLimBFxKfLimfBFxxJfLimBFxKfLimfBF
30 28 29 sylib DCMetXE∞MetYFJCnKBCauFilDxxJfLimBFxKfLimfBF
31 19.29r xxJfLimBxxJfLimBFxKfLimfBFxxJfLimBxJfLimBFxKfLimfBF
32 pm3.35 xJfLimBxJfLimBFxKfLimfBFFxKfLimfBF
33 32 eximi xxJfLimBxJfLimBFxKfLimfBFxFxKfLimfBF
34 31 33 syl xxJfLimBxxJfLimBFxKfLimfBFxFxKfLimfBF
35 8 30 34 syl2anc DCMetXE∞MetYFJCnKBCauFilDxFxKfLimfBF
36 1 2 metcn D∞MetXE∞MetYFJCnKF:XYxXe+d+yXxDy<dFxEFy<e
37 36 biimpa D∞MetXE∞MetYFJCnKF:XYxXe+d+yXxDy<dFxEFy<e
38 11 3 18 37 syl21anc DCMetXE∞MetYFJCnKBCauFilDF:XYxXe+d+yXxDy<dFxEFy<e
39 38 simpld DCMetXE∞MetYFJCnKBCauFilDF:XY
40 flfval KTopOnYBFilXF:XYKfLimfBF=KfLimYFilMapFB
41 17 13 39 40 syl3anc DCMetXE∞MetYFJCnKBCauFilDKfLimfBF=KfLimYFilMapFB
42 41 eleq2d DCMetXE∞MetYFJCnKBCauFilDFxKfLimfBFFxKfLimYFilMapFB
43 42 exbidv DCMetXE∞MetYFJCnKBCauFilDxFxKfLimfBFxFxKfLimYFilMapFB
44 35 43 mpbid DCMetXE∞MetYFJCnKBCauFilDxFxKfLimYFilMapFB
45 2 flimcfil E∞MetYFxKfLimYFilMapFBYFilMapFBCauFilE
46 45 ex E∞MetYFxKfLimYFilMapFBYFilMapFBCauFilE
47 46 exlimdv E∞MetYxFxKfLimYFilMapFBYFilMapFBCauFilE
48 3 44 47 sylc DCMetXE∞MetYFJCnKBCauFilDYFilMapFBCauFilE