Description: Induction on the integers from 0 to N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fnn0ind.1 | |
|
fnn0ind.2 | |
||
fnn0ind.3 | |
||
fnn0ind.4 | |
||
fnn0ind.5 | |
||
fnn0ind.6 | |
||
Assertion | fnn0ind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnn0ind.1 | |
|
2 | fnn0ind.2 | |
|
3 | fnn0ind.3 | |
|
4 | fnn0ind.4 | |
|
5 | fnn0ind.5 | |
|
6 | fnn0ind.6 | |
|
7 | elnn0z | |
|
8 | nn0z | |
|
9 | 0z | |
|
10 | elnn0z | |
|
11 | 10 5 | sylbir | |
12 | 11 | 3adant1 | |
13 | 0re | |
|
14 | zre | |
|
15 | zre | |
|
16 | lelttr | |
|
17 | ltle | |
|
18 | 17 | 3adant2 | |
19 | 16 18 | syld | |
20 | 13 14 15 19 | mp3an3an | |
21 | 20 | ex | |
22 | 21 | com23 | |
23 | 22 | 3impib | |
24 | 23 | impcom | |
25 | elnn0z | |
|
26 | 25 | anbi1i | |
27 | 6 | 3expb | |
28 | 10 26 27 | syl2anbr | |
29 | 28 | expcom | |
30 | 29 | 3impa | |
31 | 30 | expd | |
32 | 31 | impcom | |
33 | 24 32 | mpd | |
34 | 33 | adantll | |
35 | 1 2 3 4 12 34 | fzind | |
36 | 9 35 | mpanl1 | |
37 | 36 | expcom | |
38 | 8 37 | syl5 | |
39 | 38 | 3expa | |
40 | 7 39 | sylanb | |
41 | 40 | impcom | |
42 | 41 | 3impb | |