Metamath Proof Explorer


Theorem fnn0ind

Description: Induction on the integers from 0 to N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Hypotheses fnn0ind.1 x=0φψ
fnn0ind.2 x=yφχ
fnn0ind.3 x=y+1φθ
fnn0ind.4 x=Kφτ
fnn0ind.5 N0ψ
fnn0ind.6 N0y0y<Nχθ
Assertion fnn0ind N0K0KNτ

Proof

Step Hyp Ref Expression
1 fnn0ind.1 x=0φψ
2 fnn0ind.2 x=yφχ
3 fnn0ind.3 x=y+1φθ
4 fnn0ind.4 x=Kφτ
5 fnn0ind.5 N0ψ
6 fnn0ind.6 N0y0y<Nχθ
7 elnn0z K0K0K
8 nn0z N0N
9 0z 0
10 elnn0z N0N0N
11 10 5 sylbir N0Nψ
12 11 3adant1 0N0Nψ
13 0re 0
14 zre yy
15 zre NN
16 lelttr 0yN0yy<N0<N
17 ltle 0N0<N0N
18 17 3adant2 0yN0<N0N
19 16 18 syld 0yN0yy<N0N
20 13 14 15 19 mp3an3an yN0yy<N0N
21 20 ex yN0yy<N0N
22 21 com23 y0yy<NN0N
23 22 3impib y0yy<NN0N
24 23 impcom Ny0yy<N0N
25 elnn0z y0y0y
26 25 anbi1i y0y<Ny0yy<N
27 6 3expb N0y0y<Nχθ
28 10 26 27 syl2anbr N0Ny0yy<Nχθ
29 28 expcom y0yy<NN0Nχθ
30 29 3impa y0yy<NN0Nχθ
31 30 expd y0yy<NN0Nχθ
32 31 impcom Ny0yy<N0Nχθ
33 24 32 mpd Ny0yy<Nχθ
34 33 adantll 0Ny0yy<Nχθ
35 1 2 3 4 12 34 fzind 0NK0KKNτ
36 9 35 mpanl1 NK0KKNτ
37 36 expcom K0KKNNτ
38 8 37 syl5 K0KKNN0τ
39 38 3expa K0KKNN0τ
40 7 39 sylanb K0KNN0τ
41 40 impcom N0K0KNτ
42 41 3impb N0K0KNτ