Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by FL, 26-Jun-2011) (Proof shortened by Scott Fenton, 12-Oct-2017) Eliminate unnecessary antecedent A =/= B . (Revised by NM, 29-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fnprb.a | |
|
fnprb.b | |
||
Assertion | fnprb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnprb.a | |
|
2 | fnprb.b | |
|
3 | 1 | fnsnb | |
4 | dfsn2 | |
|
5 | 4 | fneq2i | |
6 | dfsn2 | |
|
7 | 6 | eqeq2i | |
8 | 3 5 7 | 3bitr3i | |
9 | 8 | a1i | |
10 | preq2 | |
|
11 | 10 | fneq2d | |
12 | id | |
|
13 | fveq2 | |
|
14 | 12 13 | opeq12d | |
15 | 14 | preq2d | |
16 | 15 | eqeq2d | |
17 | 9 11 16 | 3bitr3d | |
18 | fndm | |
|
19 | fvex | |
|
20 | fvex | |
|
21 | 19 20 | dmprop | |
22 | 18 21 | eqtr4di | |
23 | 22 | adantl | |
24 | 18 | adantl | |
25 | 24 | eleq2d | |
26 | vex | |
|
27 | 26 | elpr | |
28 | 1 19 | fvpr1 | |
29 | 28 | adantr | |
30 | 29 | eqcomd | |
31 | fveq2 | |
|
32 | fveq2 | |
|
33 | 31 32 | eqeq12d | |
34 | 30 33 | syl5ibrcom | |
35 | 2 20 | fvpr2 | |
36 | 35 | adantr | |
37 | 36 | eqcomd | |
38 | fveq2 | |
|
39 | fveq2 | |
|
40 | 38 39 | eqeq12d | |
41 | 37 40 | syl5ibrcom | |
42 | 34 41 | jaod | |
43 | 27 42 | biimtrid | |
44 | 25 43 | sylbid | |
45 | 44 | ralrimiv | |
46 | fnfun | |
|
47 | 1 2 19 20 | funpr | |
48 | eqfunfv | |
|
49 | 46 47 48 | syl2anr | |
50 | 23 45 49 | mpbir2and | |
51 | df-fn | |
|
52 | 47 21 51 | sylanblrc | |
53 | fneq1 | |
|
54 | 53 | biimprd | |
55 | 52 54 | mpan9 | |
56 | 50 55 | impbida | |
57 | 17 56 | pm2.61ine | |