Metamath Proof Explorer


Theorem foot

Description: From a point C outside of a line A , there exists a unique point x on A such that ( C L x ) is perpendicular to A . That point is called the foot from C on A . Theorem 8.18 of Schwabhauser p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019)

Ref Expression
Hypotheses isperp.p P=BaseG
isperp.d -˙=distG
isperp.i I=ItvG
isperp.l L=Line𝒢G
isperp.g φG𝒢Tarski
isperp.a φAranL
foot.x φCP
foot.y φ¬CA
Assertion foot φ∃!xACLx𝒢GA

Proof

Step Hyp Ref Expression
1 isperp.p P=BaseG
2 isperp.d -˙=distG
3 isperp.i I=ItvG
4 isperp.l L=Line𝒢G
5 isperp.g φG𝒢Tarski
6 isperp.a φAranL
7 foot.x φCP
8 foot.y φ¬CA
9 1 2 3 4 5 6 7 8 footex φxACLx𝒢GA
10 eqid pInv𝒢G=pInv𝒢G
11 5 ad2antrr φxAzACLx𝒢GACLz𝒢GAG𝒢Tarski
12 7 ad2antrr φxAzACLx𝒢GACLz𝒢GACP
13 5 adantr φxAzAG𝒢Tarski
14 6 adantr φxAzAAranL
15 simprl φxAzAxA
16 1 4 3 13 14 15 tglnpt φxAzAxP
17 16 adantr φxAzACLx𝒢GACLz𝒢GAxP
18 simprr φxAzAzA
19 1 4 3 13 14 18 tglnpt φxAzAzP
20 19 adantr φxAzACLx𝒢GACLz𝒢GAzP
21 8 adantr φxAzA¬CA
22 nelne2 xA¬CAxC
23 15 21 22 syl2anc φxAzAxC
24 23 necomd φxAzACx
25 24 adantr φxAzACLx𝒢GACLz𝒢GACx
26 1 3 4 11 12 17 25 tglinerflx1 φxAzACLx𝒢GACLz𝒢GACCLx
27 18 adantr φxAzACLx𝒢GACLz𝒢GAzA
28 simprl φxAzACLx𝒢GACLz𝒢GACLx𝒢GA
29 7 adantr φxAzACP
30 1 3 4 13 29 16 24 tgelrnln φxAzACLxranL
31 1 3 4 13 29 16 24 tglinerflx2 φxAzAxCLx
32 31 15 elind φxAzAxCLxA
33 1 2 3 4 13 30 14 32 isperp2 φxAzACLx𝒢GAuCLxvA⟨“uxv”⟩𝒢G
34 33 adantr φxAzACLx𝒢GACLz𝒢GACLx𝒢GAuCLxvA⟨“uxv”⟩𝒢G
35 28 34 mpbid φxAzACLx𝒢GACLz𝒢GAuCLxvA⟨“uxv”⟩𝒢G
36 id u=Cu=C
37 eqidd u=Cx=x
38 eqidd u=Cv=v
39 36 37 38 s3eqd u=C⟨“uxv”⟩=⟨“Cxv”⟩
40 39 eleq1d u=C⟨“uxv”⟩𝒢G⟨“Cxv”⟩𝒢G
41 eqidd v=zC=C
42 eqidd v=zx=x
43 id v=zv=z
44 41 42 43 s3eqd v=z⟨“Cxv”⟩=⟨“Cxz”⟩
45 44 eleq1d v=z⟨“Cxv”⟩𝒢G⟨“Cxz”⟩𝒢G
46 40 45 rspc2va CCLxzAuCLxvA⟨“uxv”⟩𝒢G⟨“Cxz”⟩𝒢G
47 26 27 35 46 syl21anc φxAzACLx𝒢GACLz𝒢GA⟨“Cxz”⟩𝒢G
48 nelne2 zA¬CAzC
49 18 21 48 syl2anc φxAzAzC
50 49 necomd φxAzACz
51 50 adantr φxAzACLx𝒢GACLz𝒢GACz
52 1 3 4 11 12 20 51 tglinerflx1 φxAzACLx𝒢GACLz𝒢GACCLz
53 15 adantr φxAzACLx𝒢GACLz𝒢GAxA
54 simprr φxAzACLx𝒢GACLz𝒢GACLz𝒢GA
55 1 3 4 13 29 19 50 tgelrnln φxAzACLzranL
56 1 3 4 13 29 19 50 tglinerflx2 φxAzAzCLz
57 56 18 elind φxAzAzCLzA
58 1 2 3 4 13 55 14 57 isperp2 φxAzACLz𝒢GAuCLzvA⟨“uzv”⟩𝒢G
59 58 adantr φxAzACLx𝒢GACLz𝒢GACLz𝒢GAuCLzvA⟨“uzv”⟩𝒢G
60 54 59 mpbid φxAzACLx𝒢GACLz𝒢GAuCLzvA⟨“uzv”⟩𝒢G
61 eqidd u=Cz=z
62 36 61 38 s3eqd u=C⟨“uzv”⟩=⟨“Czv”⟩
63 62 eleq1d u=C⟨“uzv”⟩𝒢G⟨“Czv”⟩𝒢G
64 eqidd v=xC=C
65 eqidd v=xz=z
66 id v=xv=x
67 64 65 66 s3eqd v=x⟨“Czv”⟩=⟨“Czx”⟩
68 67 eleq1d v=x⟨“Czv”⟩𝒢G⟨“Czx”⟩𝒢G
69 63 68 rspc2va CCLzxAuCLzvA⟨“uzv”⟩𝒢G⟨“Czx”⟩𝒢G
70 52 53 60 69 syl21anc φxAzACLx𝒢GACLz𝒢GA⟨“Czx”⟩𝒢G
71 1 2 3 4 10 11 12 17 20 47 70 ragflat φxAzACLx𝒢GACLz𝒢GAx=z
72 71 ex φxAzACLx𝒢GACLz𝒢GAx=z
73 72 ralrimivva φxAzACLx𝒢GACLz𝒢GAx=z
74 oveq2 x=zCLx=CLz
75 74 breq1d x=zCLx𝒢GACLz𝒢GA
76 75 rmo4 *xACLx𝒢GAxAzACLx𝒢GACLz𝒢GAx=z
77 73 76 sylibr φ*xACLx𝒢GA
78 reu5 ∃!xACLx𝒢GAxACLx𝒢GA*xACLx𝒢GA
79 9 77 78 sylanbrc φ∃!xACLx𝒢GA