| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodmodd.a |  | 
						
							| 2 |  | fprodmodd.b |  | 
						
							| 3 |  | fprodmodd.c |  | 
						
							| 4 |  | fprodmodd.m |  | 
						
							| 5 |  | fprodmodd.p |  | 
						
							| 6 |  | prodeq1 |  | 
						
							| 7 | 6 | oveq1d |  | 
						
							| 8 |  | prodeq1 |  | 
						
							| 9 | 8 | oveq1d |  | 
						
							| 10 | 7 9 | eqeq12d |  | 
						
							| 11 |  | prodeq1 |  | 
						
							| 12 | 11 | oveq1d |  | 
						
							| 13 |  | prodeq1 |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 12 14 | eqeq12d |  | 
						
							| 16 |  | prodeq1 |  | 
						
							| 17 | 16 | oveq1d |  | 
						
							| 18 |  | prodeq1 |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 | 17 19 | eqeq12d |  | 
						
							| 21 |  | prodeq1 |  | 
						
							| 22 | 21 | oveq1d |  | 
						
							| 23 |  | prodeq1 |  | 
						
							| 24 | 23 | oveq1d |  | 
						
							| 25 | 22 24 | eqeq12d |  | 
						
							| 26 |  | prod0 |  | 
						
							| 27 | 26 | a1i |  | 
						
							| 28 | 27 | oveq1d |  | 
						
							| 29 |  | prod0 |  | 
						
							| 30 | 29 | eqcomi |  | 
						
							| 31 | 30 | oveq1i |  | 
						
							| 32 | 28 31 | eqtrdi |  | 
						
							| 33 |  | nfv |  | 
						
							| 34 |  | nfcsb1v |  | 
						
							| 35 |  | ssfi |  | 
						
							| 36 | 35 | ex |  | 
						
							| 37 | 36 1 | syl11 |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 38 | impcom |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 |  | eldifn |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 | 43 | adantl |  | 
						
							| 45 |  | simpll |  | 
						
							| 46 |  | ssel |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 47 | adantl |  | 
						
							| 49 | 48 | imp |  | 
						
							| 50 | 45 49 2 | syl2anc |  | 
						
							| 51 | 50 | zcnd |  | 
						
							| 52 |  | csbeq1a |  | 
						
							| 53 |  | eldifi |  | 
						
							| 54 | 53 | adantl |  | 
						
							| 55 | 2 | ralrimiva |  | 
						
							| 56 |  | rspcsbela |  | 
						
							| 57 | 54 55 56 | syl2anr |  | 
						
							| 58 | 57 | zcnd |  | 
						
							| 59 | 33 34 39 41 44 51 52 58 | fprodsplitsn |  | 
						
							| 60 | 59 | oveq1d |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 | 39 50 | fprodzcl |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 | 45 49 3 | syl2anc |  | 
						
							| 65 | 39 64 | fprodzcl |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 | 57 | adantr |  | 
						
							| 68 | 3 | ralrimiva |  | 
						
							| 69 |  | rspcsbela |  | 
						
							| 70 | 54 68 69 | syl2anr |  | 
						
							| 71 | 70 | adantr |  | 
						
							| 72 | 4 | nnrpd |  | 
						
							| 73 | 72 | adantr |  | 
						
							| 74 | 73 | adantr |  | 
						
							| 75 |  | simpr |  | 
						
							| 76 | 5 | ralrimiva |  | 
						
							| 77 |  | rspsbca |  | 
						
							| 78 | 54 76 77 | syl2anr |  | 
						
							| 79 |  | vex |  | 
						
							| 80 |  | sbceqg |  | 
						
							| 81 | 79 80 | mp1i |  | 
						
							| 82 | 78 81 | mpbid |  | 
						
							| 83 |  | csbov1g |  | 
						
							| 84 | 83 | elv |  | 
						
							| 85 |  | csbov1g |  | 
						
							| 86 | 85 | elv |  | 
						
							| 87 | 82 84 86 | 3eqtr3g |  | 
						
							| 88 | 87 | adantr |  | 
						
							| 89 | 63 66 67 71 74 75 88 | modmul12d |  | 
						
							| 90 |  | nfcsb1v |  | 
						
							| 91 | 64 | zcnd |  | 
						
							| 92 |  | csbeq1a |  | 
						
							| 93 | 70 | zcnd |  | 
						
							| 94 | 33 90 39 41 44 91 92 93 | fprodsplitsn |  | 
						
							| 95 | 94 | oveq1d |  | 
						
							| 96 | 95 | eqcomd |  | 
						
							| 97 | 96 | adantr |  | 
						
							| 98 | 61 89 97 | 3eqtrd |  | 
						
							| 99 | 98 | ex |  | 
						
							| 100 | 10 15 20 25 32 99 1 | findcard2d |  |