Metamath Proof Explorer


Theorem frgpup2

Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)

Ref Expression
Hypotheses frgpup.b B=BaseH
frgpup.n N=invgH
frgpup.t T=yI,z2𝑜ifz=FyNFy
frgpup.h φHGrp
frgpup.i φIV
frgpup.a φF:IB
frgpup.w W=IWordI×2𝑜
frgpup.r ˙=~FGI
frgpup.g G=freeGrpI
frgpup.x X=BaseG
frgpup.e E=rangWg˙HTg
frgpup.u U=varFGrpI
frgpup.y φAI
Assertion frgpup2 φEUA=FA

Proof

Step Hyp Ref Expression
1 frgpup.b B=BaseH
2 frgpup.n N=invgH
3 frgpup.t T=yI,z2𝑜ifz=FyNFy
4 frgpup.h φHGrp
5 frgpup.i φIV
6 frgpup.a φF:IB
7 frgpup.w W=IWordI×2𝑜
8 frgpup.r ˙=~FGI
9 frgpup.g G=freeGrpI
10 frgpup.x X=BaseG
11 frgpup.e E=rangWg˙HTg
12 frgpup.u U=varFGrpI
13 frgpup.y φAI
14 8 12 vrgpval IVAIUA=⟨“A”⟩˙
15 5 13 14 syl2anc φUA=⟨“A”⟩˙
16 15 fveq2d φEUA=E⟨“A”⟩˙
17 0ex V
18 17 prid1 1𝑜
19 df2o3 2𝑜=1𝑜
20 18 19 eleqtrri 2𝑜
21 opelxpi AI2𝑜AI×2𝑜
22 13 20 21 sylancl φAI×2𝑜
23 22 s1cld φ⟨“A”⟩WordI×2𝑜
24 2on 2𝑜On
25 xpexg IV2𝑜OnI×2𝑜V
26 5 24 25 sylancl φI×2𝑜V
27 wrdexg I×2𝑜VWordI×2𝑜V
28 fvi WordI×2𝑜VIWordI×2𝑜=WordI×2𝑜
29 26 27 28 3syl φIWordI×2𝑜=WordI×2𝑜
30 7 29 eqtrid φW=WordI×2𝑜
31 23 30 eleqtrrd φ⟨“A”⟩W
32 1 2 3 4 5 6 7 8 9 10 11 frgpupval φ⟨“A”⟩WE⟨“A”⟩˙=HT⟨“A”⟩
33 31 32 mpdan φE⟨“A”⟩˙=HT⟨“A”⟩
34 1 2 3 4 5 6 frgpuptf φT:I×2𝑜B
35 s1co AI×2𝑜T:I×2𝑜BT⟨“A”⟩=⟨“TA”⟩
36 22 34 35 syl2anc φT⟨“A”⟩=⟨“TA”⟩
37 df-ov AT=TA
38 iftrue z=ifz=FyNFy=Fy
39 fveq2 y=AFy=FA
40 38 39 sylan9eqr y=Az=ifz=FyNFy=FA
41 fvex FAV
42 40 3 41 ovmpoa AI2𝑜AT=FA
43 13 20 42 sylancl φAT=FA
44 37 43 eqtr3id φTA=FA
45 44 s1eqd φ⟨“TA”⟩=⟨“FA”⟩
46 36 45 eqtrd φT⟨“A”⟩=⟨“FA”⟩
47 46 oveq2d φHT⟨“A”⟩=H⟨“FA”⟩
48 6 13 ffvelcdmd φFAB
49 1 gsumws1 FABH⟨“FA”⟩=FA
50 48 49 syl φH⟨“FA”⟩=FA
51 47 50 eqtrd φHT⟨“A”⟩=FA
52 16 33 51 3eqtrd φEUA=FA