Metamath Proof Explorer


Theorem frgrogt3nreg

Description: If a finite friendship graph has an order greater than 3, it cannot be k-regular for any k . (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V=VtxG
Assertion frgrogt3nreg GFriendGraphVFin3<Vk0¬GRegUSGraphk

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V=VtxG
2 simp1 GFriendGraphVFin3<VGFriendGraph
3 simp2 GFriendGraphVFin3<VVFin
4 hashcl VFinV0
5 0red V00
6 3re 3
7 6 a1i V03
8 nn0re V0V
9 5 7 8 3jca V003V
10 9 adantr V03<V03V
11 3pos 0<3
12 11 a1i V03<V0<3
13 simpr V03<V3<V
14 lttr 03V0<33<V0<V
15 14 imp 03V0<33<V0<V
16 10 12 13 15 syl12anc V03<V0<V
17 16 ex V03<V0<V
18 ltne 00<VV0
19 5 17 18 syl6an V03<VV0
20 hasheq0 VFinV=0V=
21 20 necon3bid VFinV0V
22 21 biimpcd V0VFinV
23 19 22 syl6 V03<VVFinV
24 23 com23 V0VFin3<VV
25 4 24 mpcom VFin3<VV
26 25 a1i GFriendGraphVFin3<VV
27 26 3imp GFriendGraphVFin3<VV
28 2 3 27 3jca GFriendGraphVFin3<VGFriendGraphVFinV
29 28 ad2antrl GRegUSGraphkGFriendGraphVFin3<Vk0GFriendGraphVFinV
30 simpl GRegUSGraphkGFriendGraphVFin3<Vk0GRegUSGraphk
31 1 frgrregord13 GFriendGraphVFinVGRegUSGraphkV=1V=3
32 29 30 31 syl2anc GRegUSGraphkGFriendGraphVFin3<Vk0V=1V=3
33 1red V03<V1
34 6 a1i V03<V3
35 8 adantr V03<VV
36 1lt3 1<3
37 36 a1i V03<V1<3
38 33 34 35 37 13 lttrd V03<V1<V
39 33 38 gtned V03<VV1
40 eqneqall V=1V1¬GRegUSGraphk
41 39 40 syl5com V03<VV=1¬GRegUSGraphk
42 ltne 33<VV3
43 7 42 sylan V03<VV3
44 eqneqall V=3V3¬GRegUSGraphk
45 43 44 syl5com V03<VV=3¬GRegUSGraphk
46 41 45 jaod V03<VV=1V=3¬GRegUSGraphk
47 46 ex V03<VV=1V=3¬GRegUSGraphk
48 4 47 syl VFin3<VV=1V=3¬GRegUSGraphk
49 48 a1i GFriendGraphVFin3<VV=1V=3¬GRegUSGraphk
50 49 3imp GFriendGraphVFin3<VV=1V=3¬GRegUSGraphk
51 50 ad2antrl GRegUSGraphkGFriendGraphVFin3<Vk0V=1V=3¬GRegUSGraphk
52 32 51 mpd GRegUSGraphkGFriendGraphVFin3<Vk0¬GRegUSGraphk
53 52 ex GRegUSGraphkGFriendGraphVFin3<Vk0¬GRegUSGraphk
54 ax-1 ¬GRegUSGraphkGFriendGraphVFin3<Vk0¬GRegUSGraphk
55 53 54 pm2.61i GFriendGraphVFin3<Vk0¬GRegUSGraphk
56 55 ralrimiva GFriendGraphVFin3<Vk0¬GRegUSGraphk