Description: If a finite friendship graph has an order greater than 3, it cannot be k-regular for any k . (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frgrreggt1.v | |
|
Assertion | frgrogt3nreg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrreggt1.v | |
|
2 | simp1 | |
|
3 | simp2 | |
|
4 | hashcl | |
|
5 | 0red | |
|
6 | 3re | |
|
7 | 6 | a1i | |
8 | nn0re | |
|
9 | 5 7 8 | 3jca | |
10 | 9 | adantr | |
11 | 3pos | |
|
12 | 11 | a1i | |
13 | simpr | |
|
14 | lttr | |
|
15 | 14 | imp | |
16 | 10 12 13 15 | syl12anc | |
17 | 16 | ex | |
18 | ltne | |
|
19 | 5 17 18 | syl6an | |
20 | hasheq0 | |
|
21 | 20 | necon3bid | |
22 | 21 | biimpcd | |
23 | 19 22 | syl6 | |
24 | 23 | com23 | |
25 | 4 24 | mpcom | |
26 | 25 | a1i | |
27 | 26 | 3imp | |
28 | 2 3 27 | 3jca | |
29 | 28 | ad2antrl | |
30 | simpl | |
|
31 | 1 | frgrregord13 | |
32 | 29 30 31 | syl2anc | |
33 | 1red | |
|
34 | 6 | a1i | |
35 | 8 | adantr | |
36 | 1lt3 | |
|
37 | 36 | a1i | |
38 | 33 34 35 37 13 | lttrd | |
39 | 33 38 | gtned | |
40 | eqneqall | |
|
41 | 39 40 | syl5com | |
42 | ltne | |
|
43 | 7 42 | sylan | |
44 | eqneqall | |
|
45 | 43 44 | syl5com | |
46 | 41 45 | jaod | |
47 | 46 | ex | |
48 | 4 47 | syl | |
49 | 48 | a1i | |
50 | 49 | 3imp | |
51 | 50 | ad2antrl | |
52 | 32 51 | mpd | |
53 | 52 | ex | |
54 | ax-1 | |
|
55 | 53 54 | pm2.61i | |
56 | 55 | ralrimiva | |