| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrreggt1.v |
|
| 2 |
|
simp1 |
|
| 3 |
|
simp2 |
|
| 4 |
|
hashcl |
|
| 5 |
|
0red |
|
| 6 |
|
3re |
|
| 7 |
6
|
a1i |
|
| 8 |
|
nn0re |
|
| 9 |
5 7 8
|
3jca |
|
| 10 |
9
|
adantr |
|
| 11 |
|
3pos |
|
| 12 |
11
|
a1i |
|
| 13 |
|
simpr |
|
| 14 |
|
lttr |
|
| 15 |
14
|
imp |
|
| 16 |
10 12 13 15
|
syl12anc |
|
| 17 |
16
|
ex |
|
| 18 |
|
ltne |
|
| 19 |
5 17 18
|
syl6an |
|
| 20 |
|
hasheq0 |
|
| 21 |
20
|
necon3bid |
|
| 22 |
21
|
biimpcd |
|
| 23 |
19 22
|
syl6 |
|
| 24 |
23
|
com23 |
|
| 25 |
4 24
|
mpcom |
|
| 26 |
25
|
a1i |
|
| 27 |
26
|
3imp |
|
| 28 |
2 3 27
|
3jca |
|
| 29 |
28
|
ad2antrl |
|
| 30 |
|
simpl |
|
| 31 |
1
|
frgrregord13 |
|
| 32 |
29 30 31
|
syl2anc |
|
| 33 |
|
1red |
|
| 34 |
6
|
a1i |
|
| 35 |
8
|
adantr |
|
| 36 |
|
1lt3 |
|
| 37 |
36
|
a1i |
|
| 38 |
33 34 35 37 13
|
lttrd |
|
| 39 |
33 38
|
gtned |
|
| 40 |
|
eqneqall |
|
| 41 |
39 40
|
syl5com |
|
| 42 |
|
ltne |
|
| 43 |
7 42
|
sylan |
|
| 44 |
|
eqneqall |
|
| 45 |
43 44
|
syl5com |
|
| 46 |
41 45
|
jaod |
|
| 47 |
46
|
ex |
|
| 48 |
4 47
|
syl |
|
| 49 |
48
|
a1i |
|
| 50 |
49
|
3imp |
|
| 51 |
50
|
ad2antrl |
|
| 52 |
32 51
|
mpd |
|
| 53 |
52
|
ex |
|
| 54 |
|
ax-1 |
|
| 55 |
53 54
|
pm2.61i |
|
| 56 |
55
|
ralrimiva |
|