Description: Lemma for frlmphl . (Contributed by AV, 21-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmphl.y | |
|
frlmphl.b | |
||
frlmphl.t | |
||
frlmphl.v | |
||
frlmphl.j | |
||
frlmphl.o | |
||
frlmphl.0 | |
||
frlmphl.s | |
||
frlmphl.f | |
||
frlmphl.m | |
||
frlmphl.u | |
||
frlmphl.i | |
||
Assertion | frlmphllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmphl.y | |
|
2 | frlmphl.b | |
|
3 | frlmphl.t | |
|
4 | frlmphl.v | |
|
5 | frlmphl.j | |
|
6 | frlmphl.o | |
|
7 | frlmphl.0 | |
|
8 | frlmphl.s | |
|
9 | frlmphl.f | |
|
10 | frlmphl.m | |
|
11 | frlmphl.u | |
|
12 | frlmphl.i | |
|
13 | 12 | 3ad2ant1 | |
14 | simp2 | |
|
15 | 1 2 4 | frlmbasmap | |
16 | 13 14 15 | syl2anc | |
17 | elmapi | |
|
18 | 16 17 | syl | |
19 | 18 | ffnd | |
20 | simp3 | |
|
21 | 1 2 4 | frlmbasmap | |
22 | 13 20 21 | syl2anc | |
23 | elmapi | |
|
24 | 22 23 | syl | |
25 | 24 | ffnd | |
26 | inidm | |
|
27 | eqidd | |
|
28 | eqidd | |
|
29 | 19 25 13 13 26 27 28 | offval | |
30 | 29 | oveq1d | |
31 | ovexd | |
|
32 | funmpt | |
|
33 | funeq | |
|
34 | 32 33 | mpbiri | |
35 | 29 34 | syl | |
36 | 1 7 4 | frlmbasfsupp | |
37 | 13 14 36 | syl2anc | |
38 | isfld | |
|
39 | 9 38 | sylib | |
40 | 39 | simpld | |
41 | drngring | |
|
42 | 40 41 | syl | |
43 | 42 | 3ad2ant1 | |
44 | 2 7 | ring0cl | |
45 | 43 44 | syl | |
46 | 2 3 7 | ringlz | |
47 | 43 46 | sylan | |
48 | 13 45 18 24 47 | suppofss1d | |
49 | fsuppsssupp | |
|
50 | 49 | fsuppimpd | |
51 | 31 35 37 48 50 | syl22anc | |
52 | 30 51 | eqeltrrd | |
53 | 13 | mptexd | |
54 | 45 | elexd | |
55 | funisfsupp | |
|
56 | 32 53 54 55 | mp3an2i | |
57 | 52 56 | mpbird | |