Metamath Proof Explorer


Theorem frlmphllem

Description: Lemma for frlmphl . (Contributed by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmphl.y Y=RfreeLModI
frlmphl.b B=BaseR
frlmphl.t ·˙=R
frlmphl.v V=BaseY
frlmphl.j ,˙=𝑖Y
frlmphl.o O=0Y
frlmphl.0 0˙=0R
frlmphl.s ˙=*R
frlmphl.f φRField
frlmphl.m φgVg,˙g=0˙g=O
frlmphl.u φxB˙x=x
frlmphl.i φIW
Assertion frlmphllem φgVhVfinSupp0˙xIgx·˙hx

Proof

Step Hyp Ref Expression
1 frlmphl.y Y=RfreeLModI
2 frlmphl.b B=BaseR
3 frlmphl.t ·˙=R
4 frlmphl.v V=BaseY
5 frlmphl.j ,˙=𝑖Y
6 frlmphl.o O=0Y
7 frlmphl.0 0˙=0R
8 frlmphl.s ˙=*R
9 frlmphl.f φRField
10 frlmphl.m φgVg,˙g=0˙g=O
11 frlmphl.u φxB˙x=x
12 frlmphl.i φIW
13 12 3ad2ant1 φgVhVIW
14 simp2 φgVhVgV
15 1 2 4 frlmbasmap IWgVgBI
16 13 14 15 syl2anc φgVhVgBI
17 elmapi gBIg:IB
18 16 17 syl φgVhVg:IB
19 18 ffnd φgVhVgFnI
20 simp3 φgVhVhV
21 1 2 4 frlmbasmap IWhVhBI
22 13 20 21 syl2anc φgVhVhBI
23 elmapi hBIh:IB
24 22 23 syl φgVhVh:IB
25 24 ffnd φgVhVhFnI
26 inidm II=I
27 eqidd φgVhVxIgx=gx
28 eqidd φgVhVxIhx=hx
29 19 25 13 13 26 27 28 offval φgVhVg·˙fh=xIgx·˙hx
30 29 oveq1d φgVhVg·˙fhsupp0˙=xIgx·˙hxsupp0˙
31 ovexd φgVhVg·˙fhV
32 funmpt FunxIgx·˙hx
33 funeq g·˙fh=xIgx·˙hxFung·˙fhFunxIgx·˙hx
34 32 33 mpbiri g·˙fh=xIgx·˙hxFung·˙fh
35 29 34 syl φgVhVFung·˙fh
36 1 7 4 frlmbasfsupp IWgVfinSupp0˙g
37 13 14 36 syl2anc φgVhVfinSupp0˙g
38 isfld RFieldRDivRingRCRing
39 9 38 sylib φRDivRingRCRing
40 39 simpld φRDivRing
41 drngring RDivRingRRing
42 40 41 syl φRRing
43 42 3ad2ant1 φgVhVRRing
44 2 7 ring0cl RRing0˙B
45 43 44 syl φgVhV0˙B
46 2 3 7 ringlz RRingxB0˙·˙x=0˙
47 43 46 sylan φgVhVxB0˙·˙x=0˙
48 13 45 18 24 47 suppofss1d φgVhVg·˙fhsupp0˙gsupp0˙
49 fsuppsssupp g·˙fhVFung·˙fhfinSupp0˙gg·˙fhsupp0˙gsupp0˙finSupp0˙g·˙fh
50 49 fsuppimpd g·˙fhVFung·˙fhfinSupp0˙gg·˙fhsupp0˙gsupp0˙g·˙fhsupp0˙Fin
51 31 35 37 48 50 syl22anc φgVhVg·˙fhsupp0˙Fin
52 30 51 eqeltrrd φgVhVxIgx·˙hxsupp0˙Fin
53 13 mptexd φgVhVxIgx·˙hxV
54 45 elexd φgVhV0˙V
55 funisfsupp FunxIgx·˙hxxIgx·˙hxV0˙VfinSupp0˙xIgx·˙hxxIgx·˙hxsupp0˙Fin
56 32 53 54 55 mp3an2i φgVhVfinSupp0˙xIgx·˙hxxIgx·˙hxsupp0˙Fin
57 52 56 mpbird φgVhVfinSupp0˙xIgx·˙hx