| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frmdup3.m |  | 
						
							| 2 |  | frmdup3.b |  | 
						
							| 3 |  | frmdup3.u |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | simp1 |  | 
						
							| 6 |  | simp2 |  | 
						
							| 7 |  | simp3 |  | 
						
							| 8 | 1 2 4 5 6 7 | frmdup1 |  | 
						
							| 9 | 5 | adantr |  | 
						
							| 10 | 6 | adantr |  | 
						
							| 11 | 7 | adantr |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 | 1 2 4 9 10 11 3 12 | frmdup2 |  | 
						
							| 14 | 13 | mpteq2dva |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 2 | mhmf |  | 
						
							| 17 | 8 16 | syl |  | 
						
							| 18 | 3 | vrmdf |  | 
						
							| 19 | 18 | 3ad2ant2 |  | 
						
							| 20 | 1 15 | frmdbas |  | 
						
							| 21 | 20 | 3ad2ant2 |  | 
						
							| 22 | 21 | feq3d |  | 
						
							| 23 | 19 22 | mpbird |  | 
						
							| 24 |  | fcompt |  | 
						
							| 25 | 17 23 24 | syl2anc |  | 
						
							| 26 | 7 | feqmptd |  | 
						
							| 27 | 14 25 26 | 3eqtr4d |  | 
						
							| 28 | 1 2 3 | frmdup3lem |  | 
						
							| 29 | 28 | expr |  | 
						
							| 30 | 29 | ralrimiva |  | 
						
							| 31 |  | coeq1 |  | 
						
							| 32 | 31 | eqeq1d |  | 
						
							| 33 | 32 | eqreu |  | 
						
							| 34 | 8 27 30 33 | syl3anc |  |