Metamath Proof Explorer


Theorem frmdup3

Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses frmdup3.m M=freeMndI
frmdup3.b B=BaseG
frmdup3.u U=varFMndI
Assertion frmdup3 GMndIVA:IB∃!mMMndHomGmU=A

Proof

Step Hyp Ref Expression
1 frmdup3.m M=freeMndI
2 frmdup3.b B=BaseG
3 frmdup3.u U=varFMndI
4 eqid xWordIGAx=xWordIGAx
5 simp1 GMndIVA:IBGMnd
6 simp2 GMndIVA:IBIV
7 simp3 GMndIVA:IBA:IB
8 1 2 4 5 6 7 frmdup1 GMndIVA:IBxWordIGAxMMndHomG
9 5 adantr GMndIVA:IByIGMnd
10 6 adantr GMndIVA:IByIIV
11 7 adantr GMndIVA:IByIA:IB
12 simpr GMndIVA:IByIyI
13 1 2 4 9 10 11 3 12 frmdup2 GMndIVA:IByIxWordIGAxUy=Ay
14 13 mpteq2dva GMndIVA:IByIxWordIGAxUy=yIAy
15 eqid BaseM=BaseM
16 15 2 mhmf xWordIGAxMMndHomGxWordIGAx:BaseMB
17 8 16 syl GMndIVA:IBxWordIGAx:BaseMB
18 3 vrmdf IVU:IWordI
19 18 3ad2ant2 GMndIVA:IBU:IWordI
20 1 15 frmdbas IVBaseM=WordI
21 20 3ad2ant2 GMndIVA:IBBaseM=WordI
22 21 feq3d GMndIVA:IBU:IBaseMU:IWordI
23 19 22 mpbird GMndIVA:IBU:IBaseM
24 fcompt xWordIGAx:BaseMBU:IBaseMxWordIGAxU=yIxWordIGAxUy
25 17 23 24 syl2anc GMndIVA:IBxWordIGAxU=yIxWordIGAxUy
26 7 feqmptd GMndIVA:IBA=yIAy
27 14 25 26 3eqtr4d GMndIVA:IBxWordIGAxU=A
28 1 2 3 frmdup3lem GMndIVA:IBmMMndHomGmU=Am=xWordIGAx
29 28 expr GMndIVA:IBmMMndHomGmU=Am=xWordIGAx
30 29 ralrimiva GMndIVA:IBmMMndHomGmU=Am=xWordIGAx
31 coeq1 m=xWordIGAxmU=xWordIGAxU
32 31 eqeq1d m=xWordIGAxmU=AxWordIGAxU=A
33 32 eqreu xWordIGAxMMndHomGxWordIGAxU=AmMMndHomGmU=Am=xWordIGAx∃!mMMndHomGmU=A
34 8 27 30 33 syl3anc GMndIVA:IB∃!mMMndHomGmU=A