| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frmdup3.m |
|
| 2 |
|
frmdup3.b |
|
| 3 |
|
frmdup3.u |
|
| 4 |
|
eqid |
|
| 5 |
|
simp1 |
|
| 6 |
|
simp2 |
|
| 7 |
|
simp3 |
|
| 8 |
1 2 4 5 6 7
|
frmdup1 |
|
| 9 |
5
|
adantr |
|
| 10 |
6
|
adantr |
|
| 11 |
7
|
adantr |
|
| 12 |
|
simpr |
|
| 13 |
1 2 4 9 10 11 3 12
|
frmdup2 |
|
| 14 |
13
|
mpteq2dva |
|
| 15 |
|
eqid |
|
| 16 |
15 2
|
mhmf |
|
| 17 |
8 16
|
syl |
|
| 18 |
3
|
vrmdf |
|
| 19 |
18
|
3ad2ant2 |
|
| 20 |
1 15
|
frmdbas |
|
| 21 |
20
|
3ad2ant2 |
|
| 22 |
21
|
feq3d |
|
| 23 |
19 22
|
mpbird |
|
| 24 |
|
fcompt |
|
| 25 |
17 23 24
|
syl2anc |
|
| 26 |
7
|
feqmptd |
|
| 27 |
14 25 26
|
3eqtr4d |
|
| 28 |
1 2 3
|
frmdup3lem |
|
| 29 |
28
|
expr |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
|
coeq1 |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
32
|
eqreu |
|
| 34 |
8 27 30 33
|
syl3anc |
|