Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frmdup3.m | |
|
frmdup3.b | |
||
frmdup3.u | |
||
Assertion | frmdup3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdup3.m | |
|
2 | frmdup3.b | |
|
3 | frmdup3.u | |
|
4 | eqid | |
|
5 | simp1 | |
|
6 | simp2 | |
|
7 | simp3 | |
|
8 | 1 2 4 5 6 7 | frmdup1 | |
9 | 5 | adantr | |
10 | 6 | adantr | |
11 | 7 | adantr | |
12 | simpr | |
|
13 | 1 2 4 9 10 11 3 12 | frmdup2 | |
14 | 13 | mpteq2dva | |
15 | eqid | |
|
16 | 15 2 | mhmf | |
17 | 8 16 | syl | |
18 | 3 | vrmdf | |
19 | 18 | 3ad2ant2 | |
20 | 1 15 | frmdbas | |
21 | 20 | 3ad2ant2 | |
22 | 21 | feq3d | |
23 | 19 22 | mpbird | |
24 | fcompt | |
|
25 | 17 23 24 | syl2anc | |
26 | 7 | feqmptd | |
27 | 14 25 26 | 3eqtr4d | |
28 | 1 2 3 | frmdup3lem | |
29 | 28 | expr | |
30 | 29 | ralrimiva | |
31 | coeq1 | |
|
32 | 31 | eqeq1d | |
33 | 32 | eqreu | |
34 | 8 27 30 33 | syl3anc | |