Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. General version of frr3 . (Contributed by Scott Fenton, 10-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | frr3g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ra4v | |
|
2 | r19.26 | |
|
3 | 2 | anbi2i | |
4 | fveq2 | |
|
5 | id | |
|
6 | predeq3 | |
|
7 | 6 | reseq2d | |
8 | 5 7 | oveq12d | |
9 | 4 8 | eqeq12d | |
10 | fveq2 | |
|
11 | 6 | reseq2d | |
12 | 5 11 | oveq12d | |
13 | 10 12 | eqeq12d | |
14 | 9 13 | anbi12d | |
15 | 14 | rspcva | |
16 | eqtr3 | |
|
17 | 16 | eqcomd | |
18 | eqtr3 | |
|
19 | 18 | ex | |
20 | 17 19 | syl | |
21 | 20 | expimpd | |
22 | predss | |
|
23 | fvreseq | |
|
24 | 22 23 | mpan2 | |
25 | 24 | biimpar | |
26 | 25 | oveq2d | |
27 | 26 | eqcomd | |
28 | 21 27 | syl11 | |
29 | 28 | expd | |
30 | 15 29 | syl | |
31 | 30 | ex | |
32 | 31 | com23 | |
33 | 32 | impd | |
34 | 3 33 | biimtrrid | |
35 | 34 | a2d | |
36 | 1 35 | syl5 | |
37 | fveq2 | |
|
38 | fveq2 | |
|
39 | 37 38 | eqeq12d | |
40 | 39 | imbi2d | |
41 | 36 40 | frins2 | |
42 | rsp | |
|
43 | 41 42 | syl | |
44 | 43 | com3r | |
45 | 44 | an4s | |
46 | 45 | com12 | |
47 | 46 | 3impib | |
48 | 47 | ralrimiv | |
49 | eqid | |
|
50 | 48 49 | jctil | |
51 | eqfnfv2 | |
|
52 | 51 | ad2ant2r | |
53 | 52 | 3adant1 | |
54 | 50 53 | mpbird | |