| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumge0.1 |  | 
						
							| 2 |  | fsumge0.2 |  | 
						
							| 3 |  | fsumge0.3 |  | 
						
							| 4 | 1 | adantr |  | 
						
							| 5 | 2 | adantlr |  | 
						
							| 6 | 3 | adantlr |  | 
						
							| 7 |  | snssi |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 | 4 5 6 8 | fsumless |  | 
						
							| 10 | 9 | adantlr |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 2 3 | jca |  | 
						
							| 13 | 12 | ralrimiva |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | nfcsb1v |  | 
						
							| 16 | 15 | nfel1 |  | 
						
							| 17 |  | nfcv |  | 
						
							| 18 |  | nfcv |  | 
						
							| 19 | 17 18 15 | nfbr |  | 
						
							| 20 | 16 19 | nfan |  | 
						
							| 21 |  | csbeq1a |  | 
						
							| 22 | 21 | eleq1d |  | 
						
							| 23 | 21 | breq2d |  | 
						
							| 24 | 22 23 | anbi12d |  | 
						
							| 25 | 20 24 | rspc |  | 
						
							| 26 | 14 25 | mpan9 |  | 
						
							| 27 | 26 | simpld |  | 
						
							| 28 | 27 | recnd |  | 
						
							| 29 |  | sumsns |  | 
						
							| 30 | 11 28 29 | syl2anc |  | 
						
							| 31 |  | simplr |  | 
						
							| 32 | 10 30 31 | 3brtr3d |  | 
						
							| 33 | 26 | simprd |  | 
						
							| 34 |  | 0re |  | 
						
							| 35 |  | letri3 |  | 
						
							| 36 | 27 34 35 | sylancl |  | 
						
							| 37 | 32 33 36 | mpbir2and |  | 
						
							| 38 | 37 | ralrimiva |  | 
						
							| 39 |  | nfv |  | 
						
							| 40 | 15 | nfeq1 |  | 
						
							| 41 | 21 | eqeq1d |  | 
						
							| 42 | 39 40 41 | cbvralw |  | 
						
							| 43 | 38 42 | sylibr |  | 
						
							| 44 | 43 | ex |  | 
						
							| 45 |  | sumz |  | 
						
							| 46 | 45 | olcs |  | 
						
							| 47 |  | sumeq2 |  | 
						
							| 48 | 47 | eqeq1d |  | 
						
							| 49 | 46 48 | syl5ibrcom |  | 
						
							| 50 | 1 49 | syl |  | 
						
							| 51 | 44 50 | impbid |  |