Metamath Proof Explorer


Theorem fsum00

Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumge0.1 φAFin
fsumge0.2 φkAB
fsumge0.3 φkA0B
Assertion fsum00 φkAB=0kAB=0

Proof

Step Hyp Ref Expression
1 fsumge0.1 φAFin
2 fsumge0.2 φkAB
3 fsumge0.3 φkA0B
4 1 adantr φmAAFin
5 2 adantlr φmAkAB
6 3 adantlr φmAkA0B
7 snssi mAmA
8 7 adantl φmAmA
9 4 5 6 8 fsumless φmAkmBkAB
10 9 adantlr φkAB=0mAkmBkAB
11 simpr φkAB=0mAmA
12 2 3 jca φkAB0B
13 12 ralrimiva φkAB0B
14 13 adantr φkAB=0kAB0B
15 nfcsb1v _km/kB
16 15 nfel1 km/kB
17 nfcv _k0
18 nfcv _k
19 17 18 15 nfbr k0m/kB
20 16 19 nfan km/kB0m/kB
21 csbeq1a k=mB=m/kB
22 21 eleq1d k=mBm/kB
23 21 breq2d k=m0B0m/kB
24 22 23 anbi12d k=mB0Bm/kB0m/kB
25 20 24 rspc mAkAB0Bm/kB0m/kB
26 14 25 mpan9 φkAB=0mAm/kB0m/kB
27 26 simpld φkAB=0mAm/kB
28 27 recnd φkAB=0mAm/kB
29 sumsns mAm/kBkmB=m/kB
30 11 28 29 syl2anc φkAB=0mAkmB=m/kB
31 simplr φkAB=0mAkAB=0
32 10 30 31 3brtr3d φkAB=0mAm/kB0
33 26 simprd φkAB=0mA0m/kB
34 0re 0
35 letri3 m/kB0m/kB=0m/kB00m/kB
36 27 34 35 sylancl φkAB=0mAm/kB=0m/kB00m/kB
37 32 33 36 mpbir2and φkAB=0mAm/kB=0
38 37 ralrimiva φkAB=0mAm/kB=0
39 nfv mB=0
40 15 nfeq1 km/kB=0
41 21 eqeq1d k=mB=0m/kB=0
42 39 40 41 cbvralw kAB=0mAm/kB=0
43 38 42 sylibr φkAB=0kAB=0
44 43 ex φkAB=0kAB=0
45 sumz A0AFinkA0=0
46 45 olcs AFinkA0=0
47 sumeq2 kAB=0kAB=kA0
48 47 eqeq1d kAB=0kAB=0kA0=0
49 46 48 syl5ibrcom AFinkAB=0kAB=0
50 1 49 syl φkAB=0kAB=0
51 44 50 impbid φkAB=0kAB=0