Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 24-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumge0.1 | |
|
fsumge0.2 | |
||
fsumge0.3 | |
||
Assertion | fsum00 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumge0.1 | |
|
2 | fsumge0.2 | |
|
3 | fsumge0.3 | |
|
4 | 1 | adantr | |
5 | 2 | adantlr | |
6 | 3 | adantlr | |
7 | snssi | |
|
8 | 7 | adantl | |
9 | 4 5 6 8 | fsumless | |
10 | 9 | adantlr | |
11 | simpr | |
|
12 | 2 3 | jca | |
13 | 12 | ralrimiva | |
14 | 13 | adantr | |
15 | nfcsb1v | |
|
16 | 15 | nfel1 | |
17 | nfcv | |
|
18 | nfcv | |
|
19 | 17 18 15 | nfbr | |
20 | 16 19 | nfan | |
21 | csbeq1a | |
|
22 | 21 | eleq1d | |
23 | 21 | breq2d | |
24 | 22 23 | anbi12d | |
25 | 20 24 | rspc | |
26 | 14 25 | mpan9 | |
27 | 26 | simpld | |
28 | 27 | recnd | |
29 | sumsns | |
|
30 | 11 28 29 | syl2anc | |
31 | simplr | |
|
32 | 10 30 31 | 3brtr3d | |
33 | 26 | simprd | |
34 | 0re | |
|
35 | letri3 | |
|
36 | 27 34 35 | sylancl | |
37 | 32 33 36 | mpbir2and | |
38 | 37 | ralrimiva | |
39 | nfv | |
|
40 | 15 | nfeq1 | |
41 | 21 | eqeq1d | |
42 | 39 40 41 | cbvralw | |
43 | 38 42 | sylibr | |
44 | 43 | ex | |
45 | sumz | |
|
46 | 45 | olcs | |
47 | sumeq2 | |
|
48 | 47 | eqeq1d | |
49 | 46 48 | syl5ibrcom | |
50 | 1 49 | syl | |
51 | 44 50 | impbid | |