| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppco2.z |  | 
						
							| 2 |  | fsuppco2.f |  | 
						
							| 3 |  | fsuppco2.g |  | 
						
							| 4 |  | fsuppco2.a |  | 
						
							| 5 |  | fsuppco2.b |  | 
						
							| 6 |  | fsuppco2.n |  | 
						
							| 7 |  | fsuppco2.i |  | 
						
							| 8 | 3 | ffund |  | 
						
							| 9 | 2 | ffund |  | 
						
							| 10 |  | funco |  | 
						
							| 11 | 8 9 10 | syl2anc |  | 
						
							| 12 | 6 | fsuppimpd |  | 
						
							| 13 |  | fco |  | 
						
							| 14 | 3 2 13 | syl2anc |  | 
						
							| 15 |  | eldifi |  | 
						
							| 16 |  | fvco3 |  | 
						
							| 17 | 2 15 16 | syl2an |  | 
						
							| 18 |  | ssidd |  | 
						
							| 19 | 2 18 4 1 | suppssr |  | 
						
							| 20 | 19 | fveq2d |  | 
						
							| 21 | 7 | adantr |  | 
						
							| 22 | 17 20 21 | 3eqtrd |  | 
						
							| 23 | 14 22 | suppss |  | 
						
							| 24 | 12 23 | ssfid |  | 
						
							| 25 | 3 5 | fexd |  | 
						
							| 26 | 2 4 | fexd |  | 
						
							| 27 |  | coexg |  | 
						
							| 28 | 25 26 27 | syl2anc |  | 
						
							| 29 |  | isfsupp |  | 
						
							| 30 | 28 1 29 | syl2anc |  | 
						
							| 31 | 11 24 30 | mpbir2and |  |