| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppmapnn0fiubex |  | 
						
							| 2 |  | ssel2 |  | 
						
							| 3 | 2 | ancoms |  | 
						
							| 4 |  | elmapfn |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 | 5 | expcom |  | 
						
							| 7 | 6 | 3ad2ant1 |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 | 8 | imp |  | 
						
							| 10 |  | nn0ex |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 |  | simpll3 |  | 
						
							| 13 |  | suppvalfn |  | 
						
							| 14 | 9 11 12 13 | syl3anc |  | 
						
							| 15 | 14 | sseq1d |  | 
						
							| 16 |  | rabss |  | 
						
							| 17 | 15 16 | bitrdi |  | 
						
							| 18 |  | nne |  | 
						
							| 19 | 18 | biimpi |  | 
						
							| 20 | 19 | 2a1d |  | 
						
							| 21 |  | elfz2nn0 |  | 
						
							| 22 |  | nn0re |  | 
						
							| 23 |  | nn0re |  | 
						
							| 24 |  | lenlt |  | 
						
							| 25 | 22 23 24 | syl2an |  | 
						
							| 26 |  | pm2.21 |  | 
						
							| 27 | 25 26 | biimtrdi |  | 
						
							| 28 | 27 | 3impia |  | 
						
							| 29 | 28 | a1d |  | 
						
							| 30 | 21 29 | sylbi |  | 
						
							| 31 | 20 30 | ja |  | 
						
							| 32 | 31 | com12 |  | 
						
							| 33 | 32 | ralimdva |  | 
						
							| 34 | 17 33 | sylbid |  | 
						
							| 35 | 34 | ralimdva |  | 
						
							| 36 | 35 | reximdva |  | 
						
							| 37 | 1 36 | syld |  |