Metamath Proof Explorer


Theorem fsuppmapnn0fiub0

Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019)

Ref Expression
Assertion fsuppmapnn0fiub0 MR0MFinZVfMfinSuppZfm0fMx0m<xfx=Z

Proof

Step Hyp Ref Expression
1 fsuppmapnn0fiubex MR0MFinZVfMfinSuppZfm0fMfsuppZ0m
2 ssel2 MR0fMfR0
3 2 ancoms fMMR0fR0
4 elmapfn fR0fFn0
5 3 4 syl fMMR0fFn0
6 5 expcom MR0fMfFn0
7 6 3ad2ant1 MR0MFinZVfMfFn0
8 7 adantr MR0MFinZVm0fMfFn0
9 8 imp MR0MFinZVm0fMfFn0
10 nn0ex 0V
11 10 a1i MR0MFinZVm0fM0V
12 simpll3 MR0MFinZVm0fMZV
13 suppvalfn fFn00VZVfsuppZ=x0|fxZ
14 9 11 12 13 syl3anc MR0MFinZVm0fMfsuppZ=x0|fxZ
15 14 sseq1d MR0MFinZVm0fMfsuppZ0mx0|fxZ0m
16 rabss x0|fxZ0mx0fxZx0m
17 15 16 bitrdi MR0MFinZVm0fMfsuppZ0mx0fxZx0m
18 nne ¬fxZfx=Z
19 18 biimpi ¬fxZfx=Z
20 19 2a1d ¬fxZMR0MFinZVm0fMx0m<xfx=Z
21 elfz2nn0 x0mx0m0xm
22 nn0re x0x
23 nn0re m0m
24 lenlt xmxm¬m<x
25 22 23 24 syl2an x0m0xm¬m<x
26 pm2.21 ¬m<xm<xfx=Z
27 25 26 syl6bi x0m0xmm<xfx=Z
28 27 3impia x0m0xmm<xfx=Z
29 28 a1d x0m0xmMR0MFinZVm0fMx0m<xfx=Z
30 21 29 sylbi x0mMR0MFinZVm0fMx0m<xfx=Z
31 20 30 ja fxZx0mMR0MFinZVm0fMx0m<xfx=Z
32 31 com12 MR0MFinZVm0fMx0fxZx0mm<xfx=Z
33 32 ralimdva MR0MFinZVm0fMx0fxZx0mx0m<xfx=Z
34 17 33 sylbid MR0MFinZVm0fMfsuppZ0mx0m<xfx=Z
35 34 ralimdva MR0MFinZVm0fMfsuppZ0mfMx0m<xfx=Z
36 35 reximdva MR0MFinZVm0fMfsuppZ0mm0fMx0m<xfx=Z
37 1 36 syld MR0MFinZVfMfinSuppZfm0fMx0m<xfx=Z