| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppmapnn0fiubex |
|
| 2 |
|
ssel2 |
|
| 3 |
2
|
ancoms |
|
| 4 |
|
elmapfn |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
expcom |
|
| 7 |
6
|
3ad2ant1 |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
imp |
|
| 10 |
|
nn0ex |
|
| 11 |
10
|
a1i |
|
| 12 |
|
simpll3 |
|
| 13 |
|
suppvalfn |
|
| 14 |
9 11 12 13
|
syl3anc |
|
| 15 |
14
|
sseq1d |
|
| 16 |
|
rabss |
|
| 17 |
15 16
|
bitrdi |
|
| 18 |
|
nne |
|
| 19 |
18
|
biimpi |
|
| 20 |
19
|
2a1d |
|
| 21 |
|
elfz2nn0 |
|
| 22 |
|
nn0re |
|
| 23 |
|
nn0re |
|
| 24 |
|
lenlt |
|
| 25 |
22 23 24
|
syl2an |
|
| 26 |
|
pm2.21 |
|
| 27 |
25 26
|
biimtrdi |
|
| 28 |
27
|
3impia |
|
| 29 |
28
|
a1d |
|
| 30 |
21 29
|
sylbi |
|
| 31 |
20 30
|
ja |
|
| 32 |
31
|
com12 |
|
| 33 |
32
|
ralimdva |
|
| 34 |
17 33
|
sylbid |
|
| 35 |
34
|
ralimdva |
|
| 36 |
35
|
reximdva |
|
| 37 |
1 36
|
syld |
|