Metamath Proof Explorer


Theorem fthestrcsetc

Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020)

Ref Expression
Hypotheses funcestrcsetc.e E = ExtStrCat U
funcestrcsetc.s S = SetCat U
funcestrcsetc.b B = Base E
funcestrcsetc.c C = Base S
funcestrcsetc.u φ U WUni
funcestrcsetc.f φ F = x B Base x
funcestrcsetc.g φ G = x B , y B I Base y Base x
Assertion fthestrcsetc φ F E Faith S G

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E = ExtStrCat U
2 funcestrcsetc.s S = SetCat U
3 funcestrcsetc.b B = Base E
4 funcestrcsetc.c C = Base S
5 funcestrcsetc.u φ U WUni
6 funcestrcsetc.f φ F = x B Base x
7 funcestrcsetc.g φ G = x B , y B I Base y Base x
8 1 2 3 4 5 6 7 funcestrcsetc φ F E Func S G
9 1 2 3 4 5 6 7 funcestrcsetclem8 φ a B b B a G b : a Hom E b F a Hom S F b
10 5 adantr φ a B b B U WUni
11 eqid Hom E = Hom E
12 1 5 estrcbas φ U = Base E
13 3 12 eqtr4id φ B = U
14 13 eleq2d φ a B a U
15 14 biimpcd a B φ a U
16 15 adantr a B b B φ a U
17 16 impcom φ a B b B a U
18 13 eleq2d φ b B b U
19 18 biimpcd b B φ b U
20 19 adantl a B b B φ b U
21 20 impcom φ a B b B b U
22 eqid Base a = Base a
23 eqid Base b = Base b
24 1 10 11 17 21 22 23 estrchom φ a B b B a Hom E b = Base b Base a
25 24 eleq2d φ a B b B h a Hom E b h Base b Base a
26 1 2 3 4 5 6 7 22 23 funcestrcsetclem6 φ a B b B h Base b Base a a G b h = h
27 26 3expia φ a B b B h Base b Base a a G b h = h
28 25 27 sylbid φ a B b B h a Hom E b a G b h = h
29 28 com12 h a Hom E b φ a B b B a G b h = h
30 29 adantr h a Hom E b k a Hom E b φ a B b B a G b h = h
31 30 impcom φ a B b B h a Hom E b k a Hom E b a G b h = h
32 24 eleq2d φ a B b B k a Hom E b k Base b Base a
33 1 2 3 4 5 6 7 22 23 funcestrcsetclem6 φ a B b B k Base b Base a a G b k = k
34 33 3expia φ a B b B k Base b Base a a G b k = k
35 32 34 sylbid φ a B b B k a Hom E b a G b k = k
36 35 com12 k a Hom E b φ a B b B a G b k = k
37 36 adantl h a Hom E b k a Hom E b φ a B b B a G b k = k
38 37 impcom φ a B b B h a Hom E b k a Hom E b a G b k = k
39 31 38 eqeq12d φ a B b B h a Hom E b k a Hom E b a G b h = a G b k h = k
40 39 biimpd φ a B b B h a Hom E b k a Hom E b a G b h = a G b k h = k
41 40 ralrimivva φ a B b B h a Hom E b k a Hom E b a G b h = a G b k h = k
42 dff13 a G b : a Hom E b 1-1 F a Hom S F b a G b : a Hom E b F a Hom S F b h a Hom E b k a Hom E b a G b h = a G b k h = k
43 9 41 42 sylanbrc φ a B b B a G b : a Hom E b 1-1 F a Hom S F b
44 43 ralrimivva φ a B b B a G b : a Hom E b 1-1 F a Hom S F b
45 eqid Hom S = Hom S
46 3 11 45 isfth2 F E Faith S G F E Func S G a B b B a G b : a Hom E b 1-1 F a Hom S F b
47 8 44 46 sylanbrc φ F E Faith S G