Metamath Proof Explorer


Theorem funcrngcsetcALT

Description: Alternate proof of funcrngcsetc , using cofuval2 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc , and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc . Surprisingly, this proof is longer than the direct proof given in funcrngcsetc . (Contributed by AV, 30-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses funcrngcsetcALT.r R = RngCat U
funcrngcsetcALT.s S = SetCat U
funcrngcsetcALT.b B = Base R
funcrngcsetcALT.u φ U WUni
funcrngcsetcALT.f φ F = x B Base x
funcrngcsetcALT.g φ G = x B , y B I x RngHomo y
Assertion funcrngcsetcALT φ F R Func S G

Proof

Step Hyp Ref Expression
1 funcrngcsetcALT.r R = RngCat U
2 funcrngcsetcALT.s S = SetCat U
3 funcrngcsetcALT.b B = Base R
4 funcrngcsetcALT.u φ U WUni
5 funcrngcsetcALT.f φ F = x B Base x
6 funcrngcsetcALT.g φ G = x B , y B I x RngHomo y
7 fveq2 x = u Base x = Base u
8 7 cbvmptv x B Base x = u B Base u
9 5 8 eqtrdi φ F = u B Base u
10 coires1 u U Base u I B = u U Base u B
11 1 3 4 rngcbas φ B = U Rng
12 11 eleq2d φ x B x U Rng
13 elin x U Rng x U x Rng
14 13 simplbi x U Rng x U
15 12 14 syl6bi φ x B x U
16 15 ssrdv φ B U
17 16 resmptd φ u U Base u B = u B Base u
18 10 17 syl5req φ u B Base u = u U Base u I B
19 9 18 eqtrd φ F = u U Base u I B
20 coires1 I Base y Base x I x RngHomo y = I Base y Base x x RngHomo y
21 eqid Base x = Base x
22 eqid Base y = Base y
23 21 22 rnghmf z x RngHomo y z : Base x Base y
24 fvex Base y V
25 fvex Base x V
26 24 25 pm3.2i Base y V Base x V
27 elmapg Base y V Base x V z Base y Base x z : Base x Base y
28 26 27 mp1i φ x B y B z Base y Base x z : Base x Base y
29 23 28 syl5ibr φ x B y B z x RngHomo y z Base y Base x
30 29 ssrdv φ x B y B x RngHomo y Base y Base x
31 30 resabs1d φ x B y B I Base y Base x x RngHomo y = I x RngHomo y
32 20 31 syl5req φ x B y B I x RngHomo y = I Base y Base x I x RngHomo y
33 32 mpoeq3dva φ x B , y B I x RngHomo y = x B , y B I Base y Base x I x RngHomo y
34 6 33 eqtrd φ G = x B , y B I Base y Base x I x RngHomo y
35 3 a1i φ B = Base R
36 3 a1i φ x B B = Base R
37 fvresi x B I B x = x
38 37 adantr x B y B I B x = x
39 38 adantl φ x B y B I B x = x
40 fvresi y B I B y = y
41 40 adantl x B y B I B y = y
42 41 adantl φ x B y B I B y = y
43 39 42 oveq12d φ x B y B I B x w U , z U I Base z Base w I B y = x w U , z U I Base z Base w y
44 eqidd φ x B y B w U , z U I Base z Base w = w U , z U I Base z Base w
45 simprr φ x B y B w = x z = y z = y
46 45 fveq2d φ x B y B w = x z = y Base z = Base y
47 simprl φ x B y B w = x z = y w = x
48 47 fveq2d φ x B y B w = x z = y Base w = Base x
49 46 48 oveq12d φ x B y B w = x z = y Base z Base w = Base y Base x
50 49 reseq2d φ x B y B w = x z = y I Base z Base w = I Base y Base x
51 15 com12 x B φ x U
52 51 adantr x B y B φ x U
53 52 impcom φ x B y B x U
54 11 eleq2d φ y B y U Rng
55 elin y U Rng y U y Rng
56 55 simplbi y U Rng y U
57 54 56 syl6bi φ y B y U
58 57 a1d φ x B y B y U
59 58 imp32 φ x B y B y U
60 ovex Base y Base x V
61 60 a1i φ x B y B Base y Base x V
62 61 resiexd φ x B y B I Base y Base x V
63 44 50 53 59 62 ovmpod φ x B y B x w U , z U I Base z Base w y = I Base y Base x
64 43 63 eqtr2d φ x B y B I Base y Base x = I B x w U , z U I Base z Base w I B y
65 eqidd φ x B y B f B , g B I f RngHomo g = f B , g B I f RngHomo g
66 oveq12 f = x g = y f RngHomo g = x RngHomo y
67 66 reseq2d f = x g = y I f RngHomo g = I x RngHomo y
68 67 adantl φ x B y B f = x g = y I f RngHomo g = I x RngHomo y
69 simprl φ x B y B x B
70 simprr φ x B y B y B
71 ovex x RngHomo y V
72 71 a1i φ x B y B x RngHomo y V
73 72 resiexd φ x B y B I x RngHomo y V
74 65 68 69 70 73 ovmpod φ x B y B x f B , g B I f RngHomo g y = I x RngHomo y
75 74 eqcomd φ x B y B I x RngHomo y = x f B , g B I f RngHomo g y
76 64 75 coeq12d φ x B y B I Base y Base x I x RngHomo y = I B x w U , z U I Base z Base w I B y x f B , g B I f RngHomo g y
77 35 36 76 mpoeq123dva φ x B , y B I Base y Base x I x RngHomo y = x Base R , y Base R I B x w U , z U I Base z Base w I B y x f B , g B I f RngHomo g y
78 34 77 eqtrd φ G = x Base R , y Base R I B x w U , z U I Base z Base w I B y x f B , g B I f RngHomo g y
79 19 78 opeq12d φ F G = u U Base u I B x Base R , y Base R I B x w U , z U I Base z Base w I B y x f B , g B I f RngHomo g y
80 eqid Base R = Base R
81 eqid ExtStrCat U = ExtStrCat U
82 eqidd φ I B = I B
83 eqidd φ f B , g B I f RngHomo g = f B , g B I f RngHomo g
84 1 81 3 4 82 83 rngcifuestrc φ I B R Func ExtStrCat U f B , g B I f RngHomo g
85 eqid Base ExtStrCat U = Base ExtStrCat U
86 eqid Base S = Base S
87 81 4 estrcbas φ U = Base ExtStrCat U
88 87 mpteq1d φ u U Base u = u Base ExtStrCat U Base u
89 fveq2 w = u Base w = Base u
90 89 oveq2d w = u Base z Base w = Base z Base u
91 90 reseq2d w = u I Base z Base w = I Base z Base u
92 fveq2 z = v Base z = Base v
93 92 oveq1d z = v Base z Base u = Base v Base u
94 93 reseq2d z = v I Base z Base u = I Base v Base u
95 91 94 cbvmpov w U , z U I Base z Base w = u U , v U I Base v Base u
96 95 a1i φ w U , z U I Base z Base w = u U , v U I Base v Base u
97 eqidd φ I Base v Base u = I Base v Base u
98 87 87 97 mpoeq123dv φ u U , v U I Base v Base u = u Base ExtStrCat U , v Base ExtStrCat U I Base v Base u
99 96 98 eqtrd φ w U , z U I Base z Base w = u Base ExtStrCat U , v Base ExtStrCat U I Base v Base u
100 81 2 85 86 4 88 99 funcestrcsetc φ u U Base u ExtStrCat U Func S w U , z U I Base z Base w
101 80 84 100 cofuval2 φ u U Base u w U , z U I Base z Base w func I B f B , g B I f RngHomo g = u U Base u I B x Base R , y Base R I B x w U , z U I Base z Base w I B y x f B , g B I f RngHomo g y
102 79 101 eqtr4d φ F G = u U Base u w U , z U I Base z Base w func I B f B , g B I f RngHomo g
103 df-br I B R Func ExtStrCat U f B , g B I f RngHomo g I B f B , g B I f RngHomo g R Func ExtStrCat U
104 84 103 sylib φ I B f B , g B I f RngHomo g R Func ExtStrCat U
105 df-br u U Base u ExtStrCat U Func S w U , z U I Base z Base w u U Base u w U , z U I Base z Base w ExtStrCat U Func S
106 100 105 sylib φ u U Base u w U , z U I Base z Base w ExtStrCat U Func S
107 104 106 cofucl φ u U Base u w U , z U I Base z Base w func I B f B , g B I f RngHomo g R Func S
108 102 107 eqeltrd φ F G R Func S
109 df-br F R Func S G F G R Func S
110 108 109 sylibr φ F R Func S G