| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcrngcsetcALT.r |
⊢ 𝑅 = ( RngCat ‘ 𝑈 ) |
| 2 |
|
funcrngcsetcALT.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 3 |
|
funcrngcsetcALT.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
funcrngcsetcALT.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 5 |
|
funcrngcsetcALT.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 6 |
|
funcrngcsetcALT.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑢 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑢 ) ) |
| 8 |
7
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) |
| 9 |
5 8
|
eqtrdi |
⊢ ( 𝜑 → 𝐹 = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) ) |
| 10 |
|
coires1 |
⊢ ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ↾ 𝐵 ) |
| 11 |
1 3 4
|
rngcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( 𝑈 ∩ Rng ) ) ) |
| 13 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
| 14 |
13
|
simplbi |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) → 𝑥 ∈ 𝑈 ) |
| 15 |
12 14
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈 ) ) |
| 16 |
15
|
ssrdv |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 17 |
16
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ↾ 𝐵 ) = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) ) |
| 18 |
10 17
|
eqtr2id |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) ) |
| 19 |
9 18
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) ) |
| 20 |
|
coires1 |
⊢ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ↾ ( 𝑥 RngHom 𝑦 ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) |
| 23 |
21 22
|
rnghmf |
⊢ ( 𝑧 ∈ ( 𝑥 RngHom 𝑦 ) → 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 24 |
|
fvex |
⊢ ( Base ‘ 𝑦 ) ∈ V |
| 25 |
|
fvex |
⊢ ( Base ‘ 𝑥 ) ∈ V |
| 26 |
24 25
|
pm3.2i |
⊢ ( ( Base ‘ 𝑦 ) ∈ V ∧ ( Base ‘ 𝑥 ) ∈ V ) |
| 27 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑦 ) ∈ V ∧ ( Base ‘ 𝑥 ) ∈ V ) → ( 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ↔ 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 28 |
26 27
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ↔ 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 29 |
23 28
|
imbitrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑥 RngHom 𝑦 ) → 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 30 |
29
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 RngHom 𝑦 ) ⊆ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) |
| 31 |
30
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ↾ ( 𝑥 RngHom 𝑦 ) ) = ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) |
| 32 |
20 31
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) = ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) |
| 33 |
32
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) ) |
| 34 |
6 33
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) ) |
| 35 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 36 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 37 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
| 40 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 43 |
39 42
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 𝑦 ) ) |
| 44 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ) |
| 45 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → 𝑧 = 𝑦 ) |
| 46 |
45
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑦 ) ) |
| 47 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → 𝑤 = 𝑥 ) |
| 48 |
47
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑥 ) ) |
| 49 |
46 48
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) = ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) |
| 50 |
49
|
reseq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) = ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 51 |
15
|
com12 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝑥 ∈ 𝑈 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜑 → 𝑥 ∈ 𝑈 ) ) |
| 53 |
52
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝑈 ) |
| 54 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( 𝑈 ∩ Rng ) ) ) |
| 55 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑦 ∈ 𝑈 ∧ 𝑦 ∈ Rng ) ) |
| 56 |
55
|
simplbi |
⊢ ( 𝑦 ∈ ( 𝑈 ∩ Rng ) → 𝑦 ∈ 𝑈 ) |
| 57 |
54 56
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
| 58 |
57
|
a1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) ) |
| 59 |
58
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝑈 ) |
| 60 |
|
ovex |
⊢ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V |
| 61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V ) |
| 62 |
61
|
resiexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∈ V ) |
| 63 |
44 50 53 59 62
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 𝑦 ) = ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 64 |
43 63
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
| 65 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) ) |
| 66 |
|
oveq12 |
⊢ ( ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) → ( 𝑓 RngHom 𝑔 ) = ( 𝑥 RngHom 𝑦 ) ) |
| 67 |
66
|
reseq2d |
⊢ ( ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) → ( I ↾ ( 𝑓 RngHom 𝑔 ) ) = ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) |
| 68 |
67
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) ) → ( I ↾ ( 𝑓 RngHom 𝑔 ) ) = ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) |
| 69 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 70 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 71 |
|
ovex |
⊢ ( 𝑥 RngHom 𝑦 ) ∈ V |
| 72 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 RngHom 𝑦 ) ∈ V ) |
| 73 |
72
|
resiexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ∈ V ) |
| 74 |
65 68 69 70 73
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) = ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) |
| 75 |
74
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) = ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) |
| 76 |
64 75
|
coeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) |
| 77 |
35 36 76
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) ) |
| 78 |
34 77
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) ) |
| 79 |
19 78
|
opeq12d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = 〈 ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) 〉 ) |
| 80 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 81 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
| 82 |
|
eqidd |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) |
| 83 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) ) |
| 84 |
1 81 3 4 82 83
|
rngcifuestrc |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) ) |
| 85 |
|
eqid |
⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) |
| 86 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 87 |
81 4
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 88 |
87
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( Base ‘ 𝑢 ) ) ) |
| 89 |
|
fveq2 |
⊢ ( 𝑤 = 𝑢 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑢 ) ) |
| 90 |
89
|
oveq2d |
⊢ ( 𝑤 = 𝑢 → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) = ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) |
| 91 |
90
|
reseq2d |
⊢ ( 𝑤 = 𝑢 → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) = ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
| 92 |
|
fveq2 |
⊢ ( 𝑧 = 𝑣 → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑣 ) ) |
| 93 |
92
|
oveq1d |
⊢ ( 𝑧 = 𝑣 → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) = ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) |
| 94 |
93
|
reseq2d |
⊢ ( 𝑧 = 𝑣 → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) = ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
| 95 |
91 94
|
cbvmpov |
⊢ ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
| 96 |
95
|
a1i |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
| 97 |
|
eqidd |
⊢ ( 𝜑 → ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) = ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
| 98 |
87 87 97
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑣 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
| 99 |
96 98
|
eqtrd |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑣 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
| 100 |
81 2 85 86 4 88 99
|
funcestrcsetc |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ) |
| 101 |
80 84 100
|
cofuval2 |
⊢ ( 𝜑 → ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ) = 〈 ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) 〉 ) |
| 102 |
79 101
|
eqtr4d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ) ) |
| 103 |
|
df-br |
⊢ ( ( I ↾ 𝐵 ) ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) ↔ 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ∈ ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ) |
| 104 |
84 103
|
sylib |
⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ∈ ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ) |
| 105 |
|
df-br |
⊢ ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ↔ 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
| 106 |
100 105
|
sylib |
⊢ ( 𝜑 → 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
| 107 |
104 106
|
cofucl |
⊢ ( 𝜑 → ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ) ∈ ( 𝑅 Func 𝑆 ) ) |
| 108 |
102 107
|
eqeltrd |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
| 109 |
|
df-br |
⊢ ( 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
| 110 |
108 109
|
sylibr |
⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |