Step |
Hyp |
Ref |
Expression |
1 |
|
funcrngcsetcALT.r |
⊢ 𝑅 = ( RngCat ‘ 𝑈 ) |
2 |
|
funcrngcsetcALT.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcrngcsetcALT.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
funcrngcsetcALT.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcrngcsetcALT.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
6 |
|
funcrngcsetcALT.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑢 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑢 ) ) |
8 |
7
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) |
9 |
5 8
|
eqtrdi |
⊢ ( 𝜑 → 𝐹 = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) ) |
10 |
|
coires1 |
⊢ ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ↾ 𝐵 ) |
11 |
1 3 4
|
rngcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( 𝑈 ∩ Rng ) ) ) |
13 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
14 |
13
|
simplbi |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) → 𝑥 ∈ 𝑈 ) |
15 |
12 14
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈 ) ) |
16 |
15
|
ssrdv |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
17 |
16
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ↾ 𝐵 ) = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) ) |
18 |
10 17
|
eqtr2id |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) ) |
19 |
9 18
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) ) |
20 |
|
coires1 |
⊢ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) = ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ↾ ( 𝑥 RngHomo 𝑦 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) |
23 |
21 22
|
rnghmf |
⊢ ( 𝑧 ∈ ( 𝑥 RngHomo 𝑦 ) → 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
24 |
|
fvex |
⊢ ( Base ‘ 𝑦 ) ∈ V |
25 |
|
fvex |
⊢ ( Base ‘ 𝑥 ) ∈ V |
26 |
24 25
|
pm3.2i |
⊢ ( ( Base ‘ 𝑦 ) ∈ V ∧ ( Base ‘ 𝑥 ) ∈ V ) |
27 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑦 ) ∈ V ∧ ( Base ‘ 𝑥 ) ∈ V ) → ( 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ↔ 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
28 |
26 27
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ↔ 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
29 |
23 28
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑥 RngHomo 𝑦 ) → 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
30 |
29
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 RngHomo 𝑦 ) ⊆ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) |
31 |
30
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ↾ ( 𝑥 RngHomo 𝑦 ) ) = ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) |
32 |
20 31
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) = ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) ) |
33 |
32
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) ) ) |
34 |
6 33
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) ) ) |
35 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
36 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
37 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
38 |
37
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
40 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
41 |
40
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
43 |
39 42
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 𝑦 ) ) |
44 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ) |
45 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → 𝑧 = 𝑦 ) |
46 |
45
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑦 ) ) |
47 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → 𝑤 = 𝑥 ) |
48 |
47
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑥 ) ) |
49 |
46 48
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) = ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) |
50 |
49
|
reseq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) = ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
51 |
15
|
com12 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝑥 ∈ 𝑈 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜑 → 𝑥 ∈ 𝑈 ) ) |
53 |
52
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝑈 ) |
54 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( 𝑈 ∩ Rng ) ) ) |
55 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑦 ∈ 𝑈 ∧ 𝑦 ∈ Rng ) ) |
56 |
55
|
simplbi |
⊢ ( 𝑦 ∈ ( 𝑈 ∩ Rng ) → 𝑦 ∈ 𝑈 ) |
57 |
54 56
|
syl6bi |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
58 |
57
|
a1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) ) |
59 |
58
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝑈 ) |
60 |
|
ovex |
⊢ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V |
61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V ) |
62 |
61
|
resiexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∈ V ) |
63 |
44 50 53 59 62
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 𝑦 ) = ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
64 |
43 63
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
65 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) ) |
66 |
|
oveq12 |
⊢ ( ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) → ( 𝑓 RngHomo 𝑔 ) = ( 𝑥 RngHomo 𝑦 ) ) |
67 |
66
|
reseq2d |
⊢ ( ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) → ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) = ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) |
68 |
67
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) ) → ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) = ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) |
69 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
70 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
71 |
|
ovex |
⊢ ( 𝑥 RngHomo 𝑦 ) ∈ V |
72 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 RngHomo 𝑦 ) ∈ V ) |
73 |
72
|
resiexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ∈ V ) |
74 |
65 68 69 70 73
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 𝑦 ) = ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) |
75 |
74
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) = ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 𝑦 ) ) |
76 |
64 75
|
coeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) = ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 𝑦 ) ) ) |
77 |
35 36 76
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 𝑦 ) ) ) ) |
78 |
34 77
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 𝑦 ) ) ) ) |
79 |
19 78
|
opeq12d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = 〈 ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 𝑦 ) ) ) 〉 ) |
80 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
81 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
82 |
|
eqidd |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) |
83 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) ) |
84 |
1 81 3 4 82 83
|
rngcifuestrc |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) ) |
85 |
|
eqid |
⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) |
86 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
87 |
81 4
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
88 |
87
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( Base ‘ 𝑢 ) ) ) |
89 |
|
fveq2 |
⊢ ( 𝑤 = 𝑢 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑢 ) ) |
90 |
89
|
oveq2d |
⊢ ( 𝑤 = 𝑢 → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) = ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) |
91 |
90
|
reseq2d |
⊢ ( 𝑤 = 𝑢 → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) = ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
92 |
|
fveq2 |
⊢ ( 𝑧 = 𝑣 → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑣 ) ) |
93 |
92
|
oveq1d |
⊢ ( 𝑧 = 𝑣 → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) = ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) |
94 |
93
|
reseq2d |
⊢ ( 𝑧 = 𝑣 → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) = ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
95 |
91 94
|
cbvmpov |
⊢ ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
96 |
95
|
a1i |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
97 |
|
eqidd |
⊢ ( 𝜑 → ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) = ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
98 |
87 87 97
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑣 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
99 |
96 98
|
eqtrd |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑣 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
100 |
81 2 85 86 4 88 99
|
funcestrcsetc |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ) |
101 |
80 84 100
|
cofuval2 |
⊢ ( 𝜑 → ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 〉 ) = 〈 ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 𝑦 ) ) ) 〉 ) |
102 |
79 101
|
eqtr4d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 〉 ) ) |
103 |
|
df-br |
⊢ ( ( I ↾ 𝐵 ) ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) ↔ 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 〉 ∈ ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ) |
104 |
84 103
|
sylib |
⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 〉 ∈ ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ) |
105 |
|
df-br |
⊢ ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ↔ 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
106 |
100 105
|
sylib |
⊢ ( 𝜑 → 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
107 |
104 106
|
cofucl |
⊢ ( 𝜑 → ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHomo 𝑔 ) ) ) 〉 ) ∈ ( 𝑅 Func 𝑆 ) ) |
108 |
102 107
|
eqeltrd |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
109 |
|
df-br |
⊢ ( 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
110 |
108 109
|
sylibr |
⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |