Metamath Proof Explorer


Theorem funcsetcestrclem8

Description: Lemma 8 for funcsetcestrc . (Contributed by AV, 28-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S=SetCatU
funcsetcestrc.c C=BaseS
funcsetcestrc.f φF=xCBasendxx
funcsetcestrc.u φUWUni
funcsetcestrc.o φωU
funcsetcestrc.g φG=xC,yCIyx
funcsetcestrc.e E=ExtStrCatU
Assertion funcsetcestrclem8 φXCYCXGY:XHomSYFXHomEFY

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S=SetCatU
2 funcsetcestrc.c C=BaseS
3 funcsetcestrc.f φF=xCBasendxx
4 funcsetcestrc.u φUWUni
5 funcsetcestrc.o φωU
6 funcsetcestrc.g φG=xC,yCIyx
7 funcsetcestrc.e E=ExtStrCatU
8 f1oi IYX:YX1-1 ontoYX
9 f1of IYX:YX1-1 ontoYXIYX:YXYX
10 8 9 mp1i φXCYCIYX:YXYX
11 elmapi fYXf:XY
12 simpr φXCYCXCYC
13 12 ancomd φXCYCYCXC
14 elmapg YCXCfYXf:XY
15 13 14 syl φXCYCfYXf:XY
16 15 biimpar φXCYCf:XYfYX
17 1 2 3 funcsetcestrclem1 φYCFY=BasendxY
18 17 fveq2d φYCBaseFY=BaseBasendxY
19 eqid BasendxY=BasendxY
20 19 1strbas YCY=BaseBasendxY
21 20 eqcomd YCBaseBasendxY=Y
22 21 adantl φYCBaseBasendxY=Y
23 18 22 eqtrd φYCBaseFY=Y
24 23 adantrl φXCYCBaseFY=Y
25 1 2 3 funcsetcestrclem1 φXCFX=BasendxX
26 25 fveq2d φXCBaseFX=BaseBasendxX
27 eqid BasendxX=BasendxX
28 27 1strbas XCX=BaseBasendxX
29 28 adantl φXCX=BaseBasendxX
30 26 29 eqtr4d φXCBaseFX=X
31 30 adantrr φXCYCBaseFX=X
32 24 31 oveq12d φXCYCBaseFYBaseFX=YX
33 32 adantr φXCYCf:XYBaseFYBaseFX=YX
34 16 33 eleqtrrd φXCYCf:XYfBaseFYBaseFX
35 34 ex φXCYCf:XYfBaseFYBaseFX
36 11 35 syl5 φXCYCfYXfBaseFYBaseFX
37 36 ssrdv φXCYCYXBaseFYBaseFX
38 10 37 fssd φXCYCIYX:YXBaseFYBaseFX
39 1 2 3 4 5 6 funcsetcestrclem5 φXCYCXGY=IYX
40 4 adantr φXCYCUWUni
41 eqid HomS=HomS
42 1 4 setcbas φU=BaseS
43 2 42 eqtr4id φC=U
44 43 eleq2d φXCXU
45 44 biimpd φXCXU
46 45 adantrd φXCYCXU
47 46 imp φXCYCXU
48 43 eleq2d φYCYU
49 48 biimpd φYCYU
50 49 adantld φXCYCYU
51 50 imp φXCYCYU
52 1 40 41 47 51 setchom φXCYCXHomSY=YX
53 eqid HomE=HomE
54 1 2 3 4 5 funcsetcestrclem2 φXCFXU
55 54 adantrr φXCYCFXU
56 1 2 3 4 5 funcsetcestrclem2 φYCFYU
57 56 adantrl φXCYCFYU
58 eqid BaseFX=BaseFX
59 eqid BaseFY=BaseFY
60 7 40 53 55 57 58 59 estrchom φXCYCFXHomEFY=BaseFYBaseFX
61 39 52 60 feq123d φXCYCXGY:XHomSYFXHomEFYIYX:YXBaseFYBaseFX
62 38 61 mpbird φXCYCXGY:XHomSYFXHomEFY