Metamath Proof Explorer


Theorem functhinclem1

Description: Lemma for functhinc . Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinclem1.b B=BaseD
functhinclem1.c C=BaseE
functhinclem1.h H=HomD
functhinclem1.j J=HomE
functhinclem1.e No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
functhinclem1.f φF:BC
functhinclem1.k K=xB,yBxHy×FxJFy
functhinclem1.1 φzBwBFzJFw=zHw=
Assertion functhinclem1 φGVGFnB×BzBwBzGw:zHwFzJFwG=K

Proof

Step Hyp Ref Expression
1 functhinclem1.b B=BaseD
2 functhinclem1.c C=BaseE
3 functhinclem1.h H=HomD
4 functhinclem1.j J=HomE
5 functhinclem1.e Could not format ( ph -> E e. ThinCat ) : No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
6 functhinclem1.f φF:BC
7 functhinclem1.k K=xB,yBxHy×FxJFy
8 functhinclem1.1 φzBwBFzJFw=zHw=
9 simpl φGVGFnB×BzBwBzGw:zHwFzJFwφ
10 simpr2 φGVGFnB×BzBwBzGw:zHwFzJFwGFnB×B
11 simpr3 φGVGFnB×BzBwBzGw:zHwFzJFwzBwBzGw:zHwFzJFw
12 eqid zHw×FzJFw=zHw×FzJFw
13 8 adantlr φGFnB×BzBwBFzJFw=zHw=
14 5 ad2antrr Could not format ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> E e. ThinCat ) : No typesetting found for |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> E e. ThinCat ) with typecode |-
15 6 ad2antrr φGFnB×BzBwBF:BC
16 simprl φGFnB×BzBwBzB
17 15 16 ffvelcdmd φGFnB×BzBwBFzC
18 simprr φGFnB×BzBwBwB
19 15 18 ffvelcdmd φGFnB×BzBwBFwC
20 14 17 19 2 4 thincmo φGFnB×BzBwB*mmFzJFw
21 12 13 20 mofeu φGFnB×BzBwBzGw:zHwFzJFwzGw=zHw×FzJFw
22 oveq1 x=zxHy=zHy
23 fveq2 x=zFx=Fz
24 23 oveq1d x=zFxJFy=FzJFy
25 22 24 xpeq12d x=zxHy×FxJFy=zHy×FzJFy
26 oveq2 y=wzHy=zHw
27 fveq2 y=wFy=Fw
28 27 oveq2d y=wFzJFy=FzJFw
29 26 28 xpeq12d y=wzHy×FzJFy=zHw×FzJFw
30 ovex zHwV
31 ovex FzJFwV
32 30 31 xpex zHw×FzJFwV
33 25 29 7 32 ovmpo zBwBzKw=zHw×FzJFw
34 33 adantl φGFnB×BzBwBzKw=zHw×FzJFw
35 34 eqeq2d φGFnB×BzBwBzGw=zKwzGw=zHw×FzJFw
36 21 35 bitr4d φGFnB×BzBwBzGw:zHwFzJFwzGw=zKw
37 36 2ralbidva φGFnB×BzBwBzGw:zHwFzJFwzBwBzGw=zKw
38 simpr φGFnB×BGFnB×B
39 ovex xHyV
40 ovex FxJFyV
41 39 40 xpex xHy×FxJFyV
42 7 41 fnmpoi KFnB×B
43 eqfnov2 GFnB×BKFnB×BG=KzBwBzGw=zKw
44 38 42 43 sylancl φGFnB×BG=KzBwBzGw=zKw
45 37 44 bitr4d φGFnB×BzBwBzGw:zHwFzJFwG=K
46 45 biimpa φGFnB×BzBwBzGw:zHwFzJFwG=K
47 9 10 11 46 syl21anc φGVGFnB×BzBwBzGw:zHwFzJFwG=K
48 1 fvexi BV
49 48 48 mpoex xB,yBxHy×FxJFyV
50 7 49 eqeltri KV
51 eleq1 G=KGVKV
52 50 51 mpbiri G=KGV
53 52 adantl φG=KGV
54 fneq1 G=KGFnB×BKFnB×B
55 42 54 mpbiri G=KGFnB×B
56 55 adantl φG=KGFnB×B
57 simpl φG=Kφ
58 simpr φG=KG=K
59 45 biimpar φGFnB×BG=KzBwBzGw:zHwFzJFw
60 57 56 58 59 syl21anc φG=KzBwBzGw:zHwFzJFw
61 53 56 60 3jca φG=KGVGFnB×BzBwBzGw:zHwFzJFw
62 47 61 impbida φGVGFnB×BzBwBzGw:zHwFzJFwG=K