Metamath Proof Explorer


Theorem fzdifsuc2

Description: Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc , but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion fzdifsuc2 NM1MN=MN+1N+1

Proof

Step Hyp Ref Expression
1 simpr NM1MN=M1N=M1
2 zre MM
3 2 ad2antlr NM1MN=M1M
4 3 ltm1d NM1MN=M1M1<M
5 1 4 eqbrtrd NM1MN=M1N<M
6 simplr NM1MN=M1M
7 eluzelz NM1N
8 7 ad2antrr NM1MN=M1N
9 fzn MNN<MMN=
10 6 8 9 syl2anc NM1MN=M1N<MMN=
11 5 10 mpbid NM1MN=M1MN=
12 difid MM=
13 12 a1i NM1MN=M1MM=
14 13 eqcomd NM1MN=M1=MM
15 oveq1 N=M1N+1=M-1+1
16 15 adantl NM1MN=M1N+1=M-1+1
17 2 recnd MM
18 17 ad2antlr NM1MN=M1M
19 1cnd NM1MN=M11
20 18 19 npcand NM1MN=M1M-1+1=M
21 16 20 eqtrd NM1MN=M1N+1=M
22 21 oveq2d NM1MN=M1MN+1=MM
23 fzsn MMM=M
24 23 ad2antlr NM1MN=M1MM=M
25 22 24 eqtr2d NM1MN=M1M=MN+1
26 21 eqcomd NM1MN=M1M=N+1
27 26 sneqd NM1MN=M1M=N+1
28 25 27 difeq12d NM1MN=M1MM=MN+1N+1
29 11 14 28 3eqtrd NM1MN=M1MN=MN+1N+1
30 simplr NM1M¬N=M1M
31 7 ad2antrr NM1M¬N=M1N
32 2 ad2antlr NM1M¬N=M1M
33 1red NM1M¬N=M11
34 32 33 resubcld NM1M¬N=M1M1
35 31 zred NM1M¬N=M1N
36 eluzle NM1M1N
37 36 ad2antrr NM1M¬N=M1M1N
38 neqne ¬N=M1NM1
39 38 adantl NM1M¬N=M1NM1
40 34 35 37 39 leneltd NM1M¬N=M1M1<N
41 zlem1lt MNMNM1<N
42 30 31 41 syl2anc NM1M¬N=M1MNM1<N
43 40 42 mpbird NM1M¬N=M1MN
44 30 31 43 3jca NM1M¬N=M1MNMN
45 eluz2 NMMNMN
46 44 45 sylibr NM1M¬N=M1NM
47 fzdifsuc NMMN=MN+1N+1
48 46 47 syl NM1M¬N=M1MN=MN+1N+1
49 29 48 pm2.61dan NM1MMN=MN+1N+1
50 eluzel2 NMM
51 50 con3i ¬M¬NM
52 fzn0 MNNM
53 51 52 sylnibr ¬M¬MN
54 nne ¬MNMN=
55 53 54 sylib ¬MMN=
56 eluzel2 N+1MM
57 56 con3i ¬M¬N+1M
58 fzn0 MN+1N+1M
59 57 58 sylnibr ¬M¬MN+1
60 nne ¬MN+1MN+1=
61 59 60 sylib ¬MMN+1=
62 61 difeq1d ¬MMN+1N+1=N+1
63 0dif N+1=
64 63 a1i ¬MN+1=
65 62 64 eqtr2d ¬M=MN+1N+1
66 55 65 eqtrd ¬MMN=MN+1N+1
67 66 adantl NM1¬MMN=MN+1N+1
68 49 67 pm2.61dan NM1MN=MN+1N+1