Description: Associative law for gcd operator. Theorem 1.4(b) in ApostolNT p. 16. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | gcdass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass | |
|
2 | anass | |
|
3 | 2 | rabbii | |
4 | 3 | supeq1i | |
5 | 1 4 | ifbieq2i | |
6 | gcdcl | |
|
7 | 6 | 3adant3 | |
8 | 7 | nn0zd | |
9 | simp3 | |
|
10 | gcdval | |
|
11 | 8 9 10 | syl2anc | |
12 | gcdeq0 | |
|
13 | 12 | 3adant3 | |
14 | 13 | anbi1d | |
15 | 14 | bicomd | |
16 | simpr | |
|
17 | simpl1 | |
|
18 | simpl2 | |
|
19 | dvdsgcdb | |
|
20 | 16 17 18 19 | syl3anc | |
21 | 20 | anbi1d | |
22 | 21 | rabbidva | |
23 | 22 | supeq1d | |
24 | 15 23 | ifbieq2d | |
25 | 11 24 | eqtr4d | |
26 | simp1 | |
|
27 | gcdcl | |
|
28 | 27 | 3adant1 | |
29 | 28 | nn0zd | |
30 | gcdval | |
|
31 | 26 29 30 | syl2anc | |
32 | gcdeq0 | |
|
33 | 32 | 3adant1 | |
34 | 33 | anbi2d | |
35 | 34 | bicomd | |
36 | simpl3 | |
|
37 | dvdsgcdb | |
|
38 | 16 18 36 37 | syl3anc | |
39 | 38 | anbi2d | |
40 | 39 | rabbidva | |
41 | 40 | supeq1d | |
42 | 35 41 | ifbieq2d | |
43 | 31 42 | eqtr4d | |
44 | 5 25 43 | 3eqtr4a | |