Metamath Proof Explorer


Theorem ghmnsgpreima

Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion ghmnsgpreima FSGrpHomTVNrmSGrpTF-1VNrmSGrpS

Proof

Step Hyp Ref Expression
1 nsgsubg VNrmSGrpTVSubGrpT
2 ghmpreima FSGrpHomTVSubGrpTF-1VSubGrpS
3 1 2 sylan2 FSGrpHomTVNrmSGrpTF-1VSubGrpS
4 ghmgrp1 FSGrpHomTSGrp
5 4 ad2antrr FSGrpHomTVNrmSGrpTxBaseSyF-1VSGrp
6 simprl FSGrpHomTVNrmSGrpTxBaseSyF-1VxBaseS
7 simprr FSGrpHomTVNrmSGrpTxBaseSyF-1VyF-1V
8 simpll FSGrpHomTVNrmSGrpTxBaseSyF-1VFSGrpHomT
9 eqid BaseS=BaseS
10 eqid BaseT=BaseT
11 9 10 ghmf FSGrpHomTF:BaseSBaseT
12 8 11 syl FSGrpHomTVNrmSGrpTxBaseSyF-1VF:BaseSBaseT
13 12 ffnd FSGrpHomTVNrmSGrpTxBaseSyF-1VFFnBaseS
14 elpreima FFnBaseSyF-1VyBaseSFyV
15 13 14 syl FSGrpHomTVNrmSGrpTxBaseSyF-1VyF-1VyBaseSFyV
16 7 15 mpbid FSGrpHomTVNrmSGrpTxBaseSyF-1VyBaseSFyV
17 16 simpld FSGrpHomTVNrmSGrpTxBaseSyF-1VyBaseS
18 eqid +S=+S
19 9 18 grpcl SGrpxBaseSyBaseSx+SyBaseS
20 5 6 17 19 syl3anc FSGrpHomTVNrmSGrpTxBaseSyF-1Vx+SyBaseS
21 eqid -S=-S
22 9 21 grpsubcl SGrpx+SyBaseSxBaseSx+Sy-SxBaseS
23 5 20 6 22 syl3anc FSGrpHomTVNrmSGrpTxBaseSyF-1Vx+Sy-SxBaseS
24 eqid -T=-T
25 9 21 24 ghmsub FSGrpHomTx+SyBaseSxBaseSFx+Sy-Sx=Fx+Sy-TFx
26 8 20 6 25 syl3anc FSGrpHomTVNrmSGrpTxBaseSyF-1VFx+Sy-Sx=Fx+Sy-TFx
27 eqid +T=+T
28 9 18 27 ghmlin FSGrpHomTxBaseSyBaseSFx+Sy=Fx+TFy
29 8 6 17 28 syl3anc FSGrpHomTVNrmSGrpTxBaseSyF-1VFx+Sy=Fx+TFy
30 29 oveq1d FSGrpHomTVNrmSGrpTxBaseSyF-1VFx+Sy-TFx=Fx+TFy-TFx
31 26 30 eqtrd FSGrpHomTVNrmSGrpTxBaseSyF-1VFx+Sy-Sx=Fx+TFy-TFx
32 simplr FSGrpHomTVNrmSGrpTxBaseSyF-1VVNrmSGrpT
33 12 6 ffvelcdmd FSGrpHomTVNrmSGrpTxBaseSyF-1VFxBaseT
34 16 simprd FSGrpHomTVNrmSGrpTxBaseSyF-1VFyV
35 10 27 24 nsgconj VNrmSGrpTFxBaseTFyVFx+TFy-TFxV
36 32 33 34 35 syl3anc FSGrpHomTVNrmSGrpTxBaseSyF-1VFx+TFy-TFxV
37 31 36 eqeltrd FSGrpHomTVNrmSGrpTxBaseSyF-1VFx+Sy-SxV
38 elpreima FFnBaseSx+Sy-SxF-1Vx+Sy-SxBaseSFx+Sy-SxV
39 13 38 syl FSGrpHomTVNrmSGrpTxBaseSyF-1Vx+Sy-SxF-1Vx+Sy-SxBaseSFx+Sy-SxV
40 23 37 39 mpbir2and FSGrpHomTVNrmSGrpTxBaseSyF-1Vx+Sy-SxF-1V
41 40 ralrimivva FSGrpHomTVNrmSGrpTxBaseSyF-1Vx+Sy-SxF-1V
42 9 18 21 isnsg3 F-1VNrmSGrpSF-1VSubGrpSxBaseSyF-1Vx+Sy-SxF-1V
43 3 41 42 sylanbrc FSGrpHomTVNrmSGrpTF-1VNrmSGrpS