Metamath Proof Explorer


Theorem ghmquskerco

Description: In the case of theorem ghmqusker , the composition of the natural homomorphism L with the constructed homomorphism J equals the original homomorphism F . One says that F factors through Q . (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0˙=0H
ghmqusker.f φFGGrpHomH
ghmqusker.k K=F-10˙
ghmqusker.q Q=G/𝑠G~QGK
ghmqusker.j J=qBaseQFq
ghmquskerco.b B=BaseG
ghmquskerco.l L=xBxG~QGK
Assertion ghmquskerco φF=JL

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0˙=0H
2 ghmqusker.f φFGGrpHomH
3 ghmqusker.k K=F-10˙
4 ghmqusker.q Q=G/𝑠G~QGK
5 ghmqusker.j J=qBaseQFq
6 ghmquskerco.b B=BaseG
7 ghmquskerco.l L=xBxG~QGK
8 eqid BaseH=BaseH
9 6 8 ghmf FGGrpHomHF:BBaseH
10 2 9 syl φF:BBaseH
11 10 ffnd φFFnB
12 2 adantr φxBFGGrpHomH
13 12 imaexd φxBFxG~QGKV
14 13 uniexd φxBFxG~QGKV
15 14 ralrimiva φxBFxG~QGKV
16 eqid xBFxG~QGK=xBFxG~QGK
17 16 fnmpt xBFxG~QGKVxBFxG~QGKFnB
18 15 17 syl φxBFxG~QGKFnB
19 ovex G~QGKV
20 19 ecelqsi xBxG~QGKB/G~QGK
21 20 adantl φxBxG~QGKB/G~QGK
22 4 a1i φQ=G/𝑠G~QGK
23 6 a1i φB=BaseG
24 ovexd φG~QGKV
25 reldmghm ReldomGrpHom
26 25 ovrcl FGGrpHomHGVHV
27 26 simpld FGGrpHomHGV
28 2 27 syl φGV
29 22 23 24 28 qusbas φB/G~QGK=BaseQ
30 29 adantr φxBB/G~QGK=BaseQ
31 21 30 eleqtrd φxBxG~QGKBaseQ
32 7 a1i φL=xBxG~QGK
33 5 a1i φJ=qBaseQFq
34 imaeq2 q=xG~QGKFq=FxG~QGK
35 34 unieqd q=xG~QGKFq=FxG~QGK
36 31 32 33 35 fmptco φJL=xBFxG~QGK
37 36 fneq1d φJLFnBxBFxG~QGKFnB
38 18 37 mpbird φJLFnB
39 ecexg G~QGKVxG~QGKV
40 19 39 ax-mp xG~QGKV
41 40 7 fnmpti LFnB
42 simpr φxBxB
43 fvco2 LFnBxBJLx=JLx
44 41 42 43 sylancr φxBJLx=JLx
45 40 a1i φxBxG~QGKV
46 32 45 fvmpt2d φxBLx=xG~QGK
47 46 fveq2d φxBJLx=JxG~QGK
48 42 6 eleqtrdi φxBxBaseG
49 1 12 3 4 5 48 ghmquskerlem1 φxBJxG~QGK=Fx
50 44 47 49 3eqtrrd φxBFx=JLx
51 11 38 50 eqfnfvd φF=JL