Description: In the case of theorem ghmqusker , the composition of the natural homomorphism L with the constructed homomorphism J equals the original homomorphism F . One says that F factors through Q . (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmqusker.1 | |
|
ghmqusker.f | |
||
ghmqusker.k | |
||
ghmqusker.q | |
||
ghmqusker.j | |
||
ghmquskerco.b | |
||
ghmquskerco.l | |
||
Assertion | ghmquskerco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmqusker.1 | |
|
2 | ghmqusker.f | |
|
3 | ghmqusker.k | |
|
4 | ghmqusker.q | |
|
5 | ghmqusker.j | |
|
6 | ghmquskerco.b | |
|
7 | ghmquskerco.l | |
|
8 | eqid | |
|
9 | 6 8 | ghmf | |
10 | 2 9 | syl | |
11 | 10 | ffnd | |
12 | 2 | adantr | |
13 | 12 | imaexd | |
14 | 13 | uniexd | |
15 | 14 | ralrimiva | |
16 | eqid | |
|
17 | 16 | fnmpt | |
18 | 15 17 | syl | |
19 | ovex | |
|
20 | 19 | ecelqsi | |
21 | 20 | adantl | |
22 | 4 | a1i | |
23 | 6 | a1i | |
24 | ovexd | |
|
25 | reldmghm | |
|
26 | 25 | ovrcl | |
27 | 26 | simpld | |
28 | 2 27 | syl | |
29 | 22 23 24 28 | qusbas | |
30 | 29 | adantr | |
31 | 21 30 | eleqtrd | |
32 | 7 | a1i | |
33 | 5 | a1i | |
34 | imaeq2 | |
|
35 | 34 | unieqd | |
36 | 31 32 33 35 | fmptco | |
37 | 36 | fneq1d | |
38 | 18 37 | mpbird | |
39 | ecexg | |
|
40 | 19 39 | ax-mp | |
41 | 40 7 | fnmpti | |
42 | simpr | |
|
43 | fvco2 | |
|
44 | 41 42 43 | sylancr | |
45 | 40 | a1i | |
46 | 32 45 | fvmpt2d | |
47 | 46 | fveq2d | |
48 | 42 6 | eleqtrdi | |
49 | 1 12 3 4 5 48 | ghmquskerlem1 | |
50 | 44 47 49 | 3eqtrrd | |
51 | 11 38 50 | eqfnfvd | |