Metamath Proof Explorer


Theorem gpgvtx1

Description: The vertices of the second kind in a generalized Petersen graph G . (Contributed by AV, 28-Aug-2025)

Ref Expression
Hypotheses gpgvtx0.j J = 1 ..^ N 2
gpgvtx0.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgvtx0.v V = Vtx G
Assertion gpgvtx1 N 3 K J X V 1 2 nd X + K mod N V 1 2 nd X V 1 2 nd X K mod N V

Proof

Step Hyp Ref Expression
1 gpgvtx0.j J = 1 ..^ N 2
2 gpgvtx0.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgvtx0.v V = Vtx G
4 eqid 0 ..^ N = 0 ..^ N
5 4 1 2 3 gpgvtxel N 3 K J X V x 0 1 y 0 ..^ N X = x y
6 2 fveq2i Could not format ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) : No typesetting found for |- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) with typecode |-
7 3 6 eqtri Could not format V = ( Vtx ` ( N gPetersenGr K ) ) : No typesetting found for |- V = ( Vtx ` ( N gPetersenGr K ) ) with typecode |-
8 eluzge3nn N 3 N
9 1 4 gpgvtx Could not format ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
10 8 9 sylan Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
11 10 adantr Could not format ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( x e. { 0 , 1 } /\ y e. ( 0 ..^ N ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
12 7 11 eqtrid N 3 K J x 0 1 y 0 ..^ N V = 0 1 × 0 ..^ N
13 1ex 1 V
14 13 prid2 1 0 1
15 14 a1i N 3 K J x 0 1 y 0 ..^ N 1 0 1
16 elfzoelz y 0 ..^ N y
17 16 adantl x 0 1 y 0 ..^ N y
18 17 adantl N 3 K J x 0 1 y 0 ..^ N y
19 elfzoelz K 1 ..^ N 2 K
20 19 1 eleq2s K J K
21 20 adantl N 3 K J K
22 21 adantr N 3 K J x 0 1 y 0 ..^ N K
23 18 22 zaddcld N 3 K J x 0 1 y 0 ..^ N y + K
24 8 adantr N 3 K J N
25 24 adantr N 3 K J x 0 1 y 0 ..^ N N
26 zmodfzo y + K N y + K mod N 0 ..^ N
27 23 25 26 syl2anc N 3 K J x 0 1 y 0 ..^ N y + K mod N 0 ..^ N
28 15 27 opelxpd N 3 K J x 0 1 y 0 ..^ N 1 y + K mod N 0 1 × 0 ..^ N
29 simprr N 3 K J x 0 1 y 0 ..^ N y 0 ..^ N
30 15 29 opelxpd N 3 K J x 0 1 y 0 ..^ N 1 y 0 1 × 0 ..^ N
31 18 22 zsubcld N 3 K J x 0 1 y 0 ..^ N y K
32 zmodfzo y K N y K mod N 0 ..^ N
33 31 25 32 syl2anc N 3 K J x 0 1 y 0 ..^ N y K mod N 0 ..^ N
34 15 33 opelxpd N 3 K J x 0 1 y 0 ..^ N 1 y K mod N 0 1 × 0 ..^ N
35 28 30 34 3jca N 3 K J x 0 1 y 0 ..^ N 1 y + K mod N 0 1 × 0 ..^ N 1 y 0 1 × 0 ..^ N 1 y K mod N 0 1 × 0 ..^ N
36 35 adantr N 3 K J x 0 1 y 0 ..^ N V = 0 1 × 0 ..^ N 1 y + K mod N 0 1 × 0 ..^ N 1 y 0 1 × 0 ..^ N 1 y K mod N 0 1 × 0 ..^ N
37 eleq2 V = 0 1 × 0 ..^ N 1 y + K mod N V 1 y + K mod N 0 1 × 0 ..^ N
38 eleq2 V = 0 1 × 0 ..^ N 1 y V 1 y 0 1 × 0 ..^ N
39 eleq2 V = 0 1 × 0 ..^ N 1 y K mod N V 1 y K mod N 0 1 × 0 ..^ N
40 37 38 39 3anbi123d V = 0 1 × 0 ..^ N 1 y + K mod N V 1 y V 1 y K mod N V 1 y + K mod N 0 1 × 0 ..^ N 1 y 0 1 × 0 ..^ N 1 y K mod N 0 1 × 0 ..^ N
41 40 adantl N 3 K J x 0 1 y 0 ..^ N V = 0 1 × 0 ..^ N 1 y + K mod N V 1 y V 1 y K mod N V 1 y + K mod N 0 1 × 0 ..^ N 1 y 0 1 × 0 ..^ N 1 y K mod N 0 1 × 0 ..^ N
42 36 41 mpbird N 3 K J x 0 1 y 0 ..^ N V = 0 1 × 0 ..^ N 1 y + K mod N V 1 y V 1 y K mod N V
43 12 42 mpdan N 3 K J x 0 1 y 0 ..^ N 1 y + K mod N V 1 y V 1 y K mod N V
44 vex x V
45 vex y V
46 44 45 op2ndd X = x y 2 nd X = y
47 oveq1 2 nd X = y 2 nd X + K = y + K
48 47 oveq1d 2 nd X = y 2 nd X + K mod N = y + K mod N
49 48 opeq2d 2 nd X = y 1 2 nd X + K mod N = 1 y + K mod N
50 49 eleq1d 2 nd X = y 1 2 nd X + K mod N V 1 y + K mod N V
51 opeq2 2 nd X = y 1 2 nd X = 1 y
52 51 eleq1d 2 nd X = y 1 2 nd X V 1 y V
53 oveq1 2 nd X = y 2 nd X K = y K
54 53 oveq1d 2 nd X = y 2 nd X K mod N = y K mod N
55 54 opeq2d 2 nd X = y 1 2 nd X K mod N = 1 y K mod N
56 55 eleq1d 2 nd X = y 1 2 nd X K mod N V 1 y K mod N V
57 50 52 56 3anbi123d 2 nd X = y 1 2 nd X + K mod N V 1 2 nd X V 1 2 nd X K mod N V 1 y + K mod N V 1 y V 1 y K mod N V
58 46 57 syl X = x y 1 2 nd X + K mod N V 1 2 nd X V 1 2 nd X K mod N V 1 y + K mod N V 1 y V 1 y K mod N V
59 43 58 syl5ibrcom N 3 K J x 0 1 y 0 ..^ N X = x y 1 2 nd X + K mod N V 1 2 nd X V 1 2 nd X K mod N V
60 59 rexlimdvva N 3 K J x 0 1 y 0 ..^ N X = x y 1 2 nd X + K mod N V 1 2 nd X V 1 2 nd X K mod N V
61 5 60 sylbid N 3 K J X V 1 2 nd X + K mod N V 1 2 nd X V 1 2 nd X K mod N V
62 61 imp N 3 K J X V 1 2 nd X + K mod N V 1 2 nd X V 1 2 nd X K mod N V