Metamath Proof Explorer


Theorem grpoinvf

Description: Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpasscan1.1 X=ranG
grpasscan1.2 N=invG
Assertion grpoinvf GGrpOpN:X1-1 ontoX

Proof

Step Hyp Ref Expression
1 grpasscan1.1 X=ranG
2 grpasscan1.2 N=invG
3 riotaex ιyX|yGx=GIdGV
4 eqid xXιyX|yGx=GIdG=xXιyX|yGx=GIdG
5 3 4 fnmpti xXιyX|yGx=GIdGFnX
6 eqid GIdG=GIdG
7 1 6 2 grpoinvfval GGrpOpN=xXιyX|yGx=GIdG
8 7 fneq1d GGrpOpNFnXxXιyX|yGx=GIdGFnX
9 5 8 mpbiri GGrpOpNFnX
10 fnrnfv NFnXranN=y|xXy=Nx
11 9 10 syl GGrpOpranN=y|xXy=Nx
12 1 2 grpoinvcl GGrpOpyXNyX
13 1 2 grpo2inv GGrpOpyXNNy=y
14 13 eqcomd GGrpOpyXy=NNy
15 fveq2 x=NyNx=NNy
16 15 rspceeqv NyXy=NNyxXy=Nx
17 12 14 16 syl2anc GGrpOpyXxXy=Nx
18 17 ex GGrpOpyXxXy=Nx
19 simpr GGrpOpxXy=Nxy=Nx
20 1 2 grpoinvcl GGrpOpxXNxX
21 20 adantr GGrpOpxXy=NxNxX
22 19 21 eqeltrd GGrpOpxXy=NxyX
23 22 rexlimdva2 GGrpOpxXy=NxyX
24 18 23 impbid GGrpOpyXxXy=Nx
25 24 eqabdv GGrpOpX=y|xXy=Nx
26 11 25 eqtr4d GGrpOpranN=X
27 fveq2 Nx=NyNNx=NNy
28 1 2 grpo2inv GGrpOpxXNNx=x
29 28 13 eqeqan12d GGrpOpxXGGrpOpyXNNx=NNyx=y
30 29 anandis GGrpOpxXyXNNx=NNyx=y
31 27 30 imbitrid GGrpOpxXyXNx=Nyx=y
32 31 ralrimivva GGrpOpxXyXNx=Nyx=y
33 dff1o6 N:X1-1 ontoXNFnXranN=XxXyXNx=Nyx=y
34 9 26 32 33 syl3anbrc GGrpOpN:X1-1 ontoX