Metamath Proof Explorer


Theorem gtiso

Description: Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Assertion gtiso A*B*FIsom<,<-1ABFIsom,-1AB

Proof

Step Hyp Ref Expression
1 eqid A×A<=A×A<
2 eqid B×B<-1=B×B<-1
3 1 2 isocnv3 FIsom<,<-1ABFIsomA×A<,B×B<-1AB
4 3 a1i A*B*FIsom<,<-1ABFIsomA×A<,B×B<-1AB
5 df-le =*×*<-1
6 5 cnveqi -1=*×*<-1-1
7 cnvdif *×*<-1-1=*×*-1<-1-1
8 cnvxp *×*-1=*×*
9 ltrel Rel<
10 dfrel2 Rel<<-1-1=<
11 9 10 mpbi <-1-1=<
12 8 11 difeq12i *×*-1<-1-1=*×*<
13 6 7 12 3eqtri -1=*×*<
14 13 ineq1i -1A×A=*×*<A×A
15 indif1 *×*<A×A=*×*A×A<
16 14 15 eqtri -1A×A=*×*A×A<
17 xpss12 A*A*A×A*×*
18 17 anidms A*A×A*×*
19 sseqin2 A×A*×**×*A×A=A×A
20 18 19 sylib A**×*A×A=A×A
21 20 difeq1d A**×*A×A<=A×A<
22 16 21 eqtr2id A*A×A<=-1A×A
23 22 adantr A*B*A×A<=-1A×A
24 isoeq2 A×A<=-1A×AFIsomA×A<,B×B<-1ABFIsom-1A×A,B×B<-1AB
25 23 24 syl A*B*FIsomA×A<,B×B<-1ABFIsom-1A×A,B×B<-1AB
26 5 ineq1i B×B=*×*<-1B×B
27 indif1 *×*<-1B×B=*×*B×B<-1
28 26 27 eqtri B×B=*×*B×B<-1
29 xpss12 B*B*B×B*×*
30 29 anidms B*B×B*×*
31 sseqin2 B×B*×**×*B×B=B×B
32 30 31 sylib B**×*B×B=B×B
33 32 difeq1d B**×*B×B<-1=B×B<-1
34 28 33 eqtr2id B*B×B<-1=B×B
35 34 adantl A*B*B×B<-1=B×B
36 isoeq3 B×B<-1=B×BFIsom-1A×A,B×B<-1ABFIsom-1A×A,B×BAB
37 35 36 syl A*B*FIsom-1A×A,B×B<-1ABFIsom-1A×A,B×BAB
38 4 25 37 3bitrd A*B*FIsom<,<-1ABFIsom-1A×A,B×BAB
39 isocnv2 FIsom-1,ABFIsom-1-1,-1AB
40 isores2 FIsom-1,ABFIsom-1,B×BAB
41 isores1 FIsom-1,B×BABFIsom-1A×A,B×BAB
42 40 41 bitri FIsom-1,ABFIsom-1A×A,B×BAB
43 lerel Rel
44 dfrel2 Rel-1-1=
45 43 44 mpbi -1-1=
46 isoeq2 -1-1=FIsom-1-1,-1ABFIsom,-1AB
47 45 46 ax-mp FIsom-1-1,-1ABFIsom,-1AB
48 39 42 47 3bitr3ri FIsom,-1ABFIsom-1A×A,B×BAB
49 38 48 bitr4di A*B*FIsom<,<-1ABFIsom,-1AB