Description: Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | gtiso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | isocnv3 | |
4 | 3 | a1i | |
5 | df-le | |
|
6 | 5 | cnveqi | |
7 | cnvdif | |
|
8 | cnvxp | |
|
9 | ltrel | |
|
10 | dfrel2 | |
|
11 | 9 10 | mpbi | |
12 | 8 11 | difeq12i | |
13 | 6 7 12 | 3eqtri | |
14 | 13 | ineq1i | |
15 | indif1 | |
|
16 | 14 15 | eqtri | |
17 | xpss12 | |
|
18 | 17 | anidms | |
19 | sseqin2 | |
|
20 | 18 19 | sylib | |
21 | 20 | difeq1d | |
22 | 16 21 | eqtr2id | |
23 | 22 | adantr | |
24 | isoeq2 | |
|
25 | 23 24 | syl | |
26 | 5 | ineq1i | |
27 | indif1 | |
|
28 | 26 27 | eqtri | |
29 | xpss12 | |
|
30 | 29 | anidms | |
31 | sseqin2 | |
|
32 | 30 31 | sylib | |
33 | 32 | difeq1d | |
34 | 28 33 | eqtr2id | |
35 | 34 | adantl | |
36 | isoeq3 | |
|
37 | 35 36 | syl | |
38 | 4 25 37 | 3bitrd | |
39 | isocnv2 | |
|
40 | isores2 | |
|
41 | isores1 | |
|
42 | 40 41 | bitri | |
43 | lerel | |
|
44 | dfrel2 | |
|
45 | 43 44 | mpbi | |
46 | isoeq2 | |
|
47 | 45 46 | ax-mp | |
48 | 39 42 47 | 3bitr3ri | |
49 | 38 48 | bitr4di | |