Metamath Proof Explorer


Theorem hashdifpr

Description: The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020)

Ref Expression
Assertion hashdifpr A Fin B A C A B C A B C = A 2

Proof

Step Hyp Ref Expression
1 difpr A B C = A B C
2 1 a1i A Fin B A C A B C A B C = A B C
3 2 fveq2d A Fin B A C A B C A B C = A B C
4 diffi A Fin A B Fin
5 necom B C C B
6 5 biimpi B C C B
7 6 anim2i C A B C C A C B
8 7 3adant1 B A C A B C C A C B
9 8 adantl A Fin B A C A B C C A C B
10 eldifsn C A B C A C B
11 9 10 sylibr A Fin B A C A B C C A B
12 hashdifsn A B Fin C A B A B C = A B 1
13 4 11 12 syl2an2r A Fin B A C A B C A B C = A B 1
14 hashdifsn A Fin B A A B = A 1
15 14 3ad2antr1 A Fin B A C A B C A B = A 1
16 15 oveq1d A Fin B A C A B C A B 1 = A - 1 - 1
17 hashcl A Fin A 0
18 17 nn0cnd A Fin A
19 sub1m1 A A - 1 - 1 = A 2
20 18 19 syl A Fin A - 1 - 1 = A 2
21 20 adantr A Fin B A C A B C A - 1 - 1 = A 2
22 16 21 eqtrd A Fin B A C A B C A B 1 = A 2
23 3 13 22 3eqtrd A Fin B A C A B C A B C = A 2