Metamath Proof Explorer


Theorem hashgt12el2

Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)

Ref Expression
Assertion hashgt12el2 VW1<VAVbVAb

Proof

Step Hyp Ref Expression
1 hash0 =0
2 fveq2 =V=V
3 1 2 eqtr3id =V0=V
4 breq2 V=01<V1<0
5 4 biimpd V=01<V1<0
6 5 eqcoms 0=V1<V1<0
7 0le1 01
8 0re 0
9 1re 1
10 8 9 lenlti 01¬1<0
11 pm2.21 ¬1<01<0bVAb
12 10 11 sylbi 011<0bVAb
13 7 12 ax-mp 1<0bVAb
14 6 13 syl6com 1<V0=VbVAb
15 14 3ad2ant2 VW1<VAV0=VbVAb
16 3 15 syl5com =VVW1<VAVbVAb
17 df-ne V¬=V
18 necom VV
19 17 18 bitr3i ¬=VV
20 ralnex bV¬Ab¬bVAb
21 nne ¬AbA=b
22 eqcom A=bb=A
23 21 22 bitri ¬Abb=A
24 23 ralbii bV¬AbbVb=A
25 20 24 bitr3i ¬bVAbbVb=A
26 eqsn VV=AbVb=A
27 26 bicomd VbVb=AV=A
28 27 adantl VWVbVb=AV=A
29 28 adantr VWVAVbVb=AV=A
30 hashsnle1 A1
31 fveq2 V=AV=A
32 31 breq1d V=AV1A1
33 32 adantl VWVAVV=AV1A1
34 30 33 mpbiri VWVAVV=AV1
35 34 ex VWVAVV=AV1
36 29 35 sylbid VWVAVbVb=AV1
37 hashxrcl VWV*
38 37 adantr VWVV*
39 38 adantr VWVAVV*
40 1xr 1*
41 xrlenlt V*1*V1¬1<V
42 39 40 41 sylancl VWVAVV1¬1<V
43 36 42 sylibd VWVAVbVb=A¬1<V
44 25 43 biimtrid VWVAV¬bVAb¬1<V
45 44 con4d VWVAV1<VbVAb
46 45 exp31 VWVAV1<VbVAb
47 46 com24 VW1<VAVVbVAb
48 47 3imp VW1<VAVVbVAb
49 48 com12 VVW1<VAVbVAb
50 19 49 sylbi ¬=VVW1<VAVbVAb
51 16 50 pm2.61i VW1<VAVbVAb