Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | hashgt12el2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash0 | |
|
2 | fveq2 | |
|
3 | 1 2 | eqtr3id | |
4 | breq2 | |
|
5 | 4 | biimpd | |
6 | 5 | eqcoms | |
7 | 0le1 | |
|
8 | 0re | |
|
9 | 1re | |
|
10 | 8 9 | lenlti | |
11 | pm2.21 | |
|
12 | 10 11 | sylbi | |
13 | 7 12 | ax-mp | |
14 | 6 13 | syl6com | |
15 | 14 | 3ad2ant2 | |
16 | 3 15 | syl5com | |
17 | df-ne | |
|
18 | necom | |
|
19 | 17 18 | bitr3i | |
20 | ralnex | |
|
21 | nne | |
|
22 | eqcom | |
|
23 | 21 22 | bitri | |
24 | 23 | ralbii | |
25 | 20 24 | bitr3i | |
26 | eqsn | |
|
27 | 26 | bicomd | |
28 | 27 | adantl | |
29 | 28 | adantr | |
30 | hashsnle1 | |
|
31 | fveq2 | |
|
32 | 31 | breq1d | |
33 | 32 | adantl | |
34 | 30 33 | mpbiri | |
35 | 34 | ex | |
36 | 29 35 | sylbid | |
37 | hashxrcl | |
|
38 | 37 | adantr | |
39 | 38 | adantr | |
40 | 1xr | |
|
41 | xrlenlt | |
|
42 | 39 40 41 | sylancl | |
43 | 36 42 | sylibd | |
44 | 25 43 | biimtrid | |
45 | 44 | con4d | |
46 | 45 | exp31 | |
47 | 46 | com24 | |
48 | 47 | 3imp | |
49 | 48 | com12 | |
50 | 19 49 | sylbi | |
51 | 16 50 | pm2.61i | |