Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun . (Contributed by Alexander van der Vekens, 21-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | hashunx | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashun | |
|
2 | 1 | 3expa | |
3 | hashcl | |
|
4 | 3 | nn0red | |
5 | hashcl | |
|
6 | 5 | nn0red | |
7 | 4 6 | anim12i | |
8 | 7 | adantr | |
9 | rexadd | |
|
10 | 8 9 | syl | |
11 | 10 | eqcomd | |
12 | 2 11 | eqtrd | |
13 | 12 | expcom | |
14 | 13 | 3ad2ant3 | |
15 | unexg | |
|
16 | unfir | |
|
17 | 16 | con3i | |
18 | hashinf | |
|
19 | 15 17 18 | syl2anr | |
20 | ianor | |
|
21 | simprl | |
|
22 | simprr | |
|
23 | hashnfinnn0 | |
|
24 | 23 | ex | |
25 | 24 | adantr | |
26 | 25 | impcom | |
27 | hashinfxadd | |
|
28 | 21 22 26 27 | syl3anc | |
29 | 28 | eqcomd | |
30 | 29 | ex | |
31 | hashxrcl | |
|
32 | hashxrcl | |
|
33 | 31 32 | anim12i | |
34 | 33 | adantl | |
35 | xaddcom | |
|
36 | 34 35 | syl | |
37 | simprr | |
|
38 | simprl | |
|
39 | hashnfinnn0 | |
|
40 | 39 | ex | |
41 | 40 | adantl | |
42 | 41 | impcom | |
43 | hashinfxadd | |
|
44 | 37 38 42 43 | syl3anc | |
45 | 36 44 | eqtrd | |
46 | 45 | eqcomd | |
47 | 46 | ex | |
48 | 30 47 | jaoi | |
49 | 20 48 | sylbi | |
50 | 49 | imp | |
51 | 19 50 | eqtrd | |
52 | 51 | expcom | |
53 | 52 | 3adant3 | |
54 | 14 53 | pm2.61d | |