Metamath Proof Explorer


Theorem hashunx

Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun . (Contributed by Alexander van der Vekens, 21-Dec-2017)

Ref Expression
Assertion hashunx AVBWAB=AB=A+𝑒B

Proof

Step Hyp Ref Expression
1 hashun AFinBFinAB=AB=A+B
2 1 3expa AFinBFinAB=AB=A+B
3 hashcl AFinA0
4 3 nn0red AFinA
5 hashcl BFinB0
6 5 nn0red BFinB
7 4 6 anim12i AFinBFinAB
8 7 adantr AFinBFinAB=AB
9 rexadd ABA+𝑒B=A+B
10 8 9 syl AFinBFinAB=A+𝑒B=A+B
11 10 eqcomd AFinBFinAB=A+B=A+𝑒B
12 2 11 eqtrd AFinBFinAB=AB=A+𝑒B
13 12 expcom AB=AFinBFinAB=A+𝑒B
14 13 3ad2ant3 AVBWAB=AFinBFinAB=A+𝑒B
15 unexg AVBWABV
16 unfir ABFinAFinBFin
17 16 con3i ¬AFinBFin¬ABFin
18 hashinf ABV¬ABFinAB=+∞
19 15 17 18 syl2anr ¬AFinBFinAVBWAB=+∞
20 ianor ¬AFinBFin¬AFin¬BFin
21 simprl ¬AFinAVBWAV
22 simprr ¬AFinAVBWBW
23 hashnfinnn0 AV¬AFinA0
24 23 ex AV¬AFinA0
25 24 adantr AVBW¬AFinA0
26 25 impcom ¬AFinAVBWA0
27 hashinfxadd AVBWA0A+𝑒B=+∞
28 21 22 26 27 syl3anc ¬AFinAVBWA+𝑒B=+∞
29 28 eqcomd ¬AFinAVBW+∞=A+𝑒B
30 29 ex ¬AFinAVBW+∞=A+𝑒B
31 hashxrcl AVA*
32 hashxrcl BWB*
33 31 32 anim12i AVBWA*B*
34 33 adantl ¬BFinAVBWA*B*
35 xaddcom A*B*A+𝑒B=B+𝑒A
36 34 35 syl ¬BFinAVBWA+𝑒B=B+𝑒A
37 simprr ¬BFinAVBWBW
38 simprl ¬BFinAVBWAV
39 hashnfinnn0 BW¬BFinB0
40 39 ex BW¬BFinB0
41 40 adantl AVBW¬BFinB0
42 41 impcom ¬BFinAVBWB0
43 hashinfxadd BWAVB0B+𝑒A=+∞
44 37 38 42 43 syl3anc ¬BFinAVBWB+𝑒A=+∞
45 36 44 eqtrd ¬BFinAVBWA+𝑒B=+∞
46 45 eqcomd ¬BFinAVBW+∞=A+𝑒B
47 46 ex ¬BFinAVBW+∞=A+𝑒B
48 30 47 jaoi ¬AFin¬BFinAVBW+∞=A+𝑒B
49 20 48 sylbi ¬AFinBFinAVBW+∞=A+𝑒B
50 49 imp ¬AFinBFinAVBW+∞=A+𝑒B
51 19 50 eqtrd ¬AFinBFinAVBWAB=A+𝑒B
52 51 expcom AVBW¬AFinBFinAB=A+𝑒B
53 52 3adant3 AVBWAB=¬AFinBFinAB=A+𝑒B
54 14 53 pm2.61d AVBWAB=AB=A+𝑒B