Description: Simplify the cardinal A ^ NN of hausmapdom to ~P B = 2 ^ B when B is an infinite cardinal greater than A . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hauspwdom.1 | |
|
Assertion | hauspwdom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hauspwdom.1 | |
|
2 | 1 | hausmapdom | |
3 | 2 | adantr | |
4 | simprr | |
|
5 | 1nn | |
|
6 | noel | |
|
7 | eleq2 | |
|
8 | 6 7 | mtbiri | |
9 | 8 | adantr | |
10 | 5 9 | mt2 | |
11 | mapdom2 | |
|
12 | 4 10 11 | sylancl | |
13 | sdomdom | |
|
14 | 13 | adantl | |
15 | mapdom1 | |
|
16 | 14 15 | syl | |
17 | reldom | |
|
18 | 17 | brrelex2i | |
19 | 18 | ad2antll | |
20 | pw2eng | |
|
21 | ensym | |
|
22 | 19 20 21 | 3syl | |
23 | 22 | adantr | |
24 | domentr | |
|
25 | 16 23 24 | syl2anc | |
26 | onfin2 | |
|
27 | inss2 | |
|
28 | 26 27 | eqsstri | |
29 | 2onn | |
|
30 | 28 29 | sselii | |
31 | simprl | |
|
32 | 17 | brrelex1i | |
33 | 31 32 | syl | |
34 | fidomtri | |
|
35 | 30 33 34 | sylancr | |
36 | 35 | biimpar | |
37 | numth3 | |
|
38 | 19 37 | syl | |
39 | 38 | adantr | |
40 | nnenom | |
|
41 | 40 | ensymi | |
42 | endomtr | |
|
43 | 41 4 42 | sylancr | |
44 | 43 | adantr | |
45 | simpr | |
|
46 | 31 | adantr | |
47 | mappwen | |
|
48 | 39 44 45 46 47 | syl22anc | |
49 | endom | |
|
50 | 48 49 | syl | |
51 | 36 50 | syldan | |
52 | 25 51 | pm2.61dan | |
53 | domtr | |
|
54 | 12 52 53 | syl2anc | |
55 | domtr | |
|
56 | 3 54 55 | syl2anc | |