Metamath Proof Explorer


Theorem hauspwdom

Description: Simplify the cardinal A ^ NN of hausmapdom to ~P B = 2 ^ B when B is an infinite cardinal greater than A . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypothesis hauspwdom.1 X=J
Assertion hauspwdom JHausJ1st𝜔AXA𝒫BBclsJA𝒫B

Proof

Step Hyp Ref Expression
1 hauspwdom.1 X=J
2 1 hausmapdom JHausJ1st𝜔AXclsJAA
3 2 adantr JHausJ1st𝜔AXA𝒫BBclsJAA
4 simprr JHausJ1st𝜔AXA𝒫BBB
5 1nn 1
6 noel ¬1
7 eleq2 =11
8 6 7 mtbiri =¬1
9 8 adantr =A=¬1
10 5 9 mt2 ¬=A=
11 mapdom2 B¬=A=AAB
12 4 10 11 sylancl JHausJ1st𝜔AXA𝒫BBAAB
13 sdomdom A2𝑜A2𝑜
14 13 adantl JHausJ1st𝜔AXA𝒫BBA2𝑜A2𝑜
15 mapdom1 A2𝑜AB2𝑜B
16 14 15 syl JHausJ1st𝜔AXA𝒫BBA2𝑜AB2𝑜B
17 reldom Rel
18 17 brrelex2i BBV
19 18 ad2antll JHausJ1st𝜔AXA𝒫BBBV
20 pw2eng BV𝒫B2𝑜B
21 ensym 𝒫B2𝑜B2𝑜B𝒫B
22 19 20 21 3syl JHausJ1st𝜔AXA𝒫BB2𝑜B𝒫B
23 22 adantr JHausJ1st𝜔AXA𝒫BBA2𝑜2𝑜B𝒫B
24 domentr AB2𝑜B2𝑜B𝒫BAB𝒫B
25 16 23 24 syl2anc JHausJ1st𝜔AXA𝒫BBA2𝑜AB𝒫B
26 onfin2 ω=OnFin
27 inss2 OnFinFin
28 26 27 eqsstri ωFin
29 2onn 2𝑜ω
30 28 29 sselii 2𝑜Fin
31 simprl JHausJ1st𝜔AXA𝒫BBA𝒫B
32 17 brrelex1i A𝒫BAV
33 31 32 syl JHausJ1st𝜔AXA𝒫BBAV
34 fidomtri 2𝑜FinAV2𝑜A¬A2𝑜
35 30 33 34 sylancr JHausJ1st𝜔AXA𝒫BB2𝑜A¬A2𝑜
36 35 biimpar JHausJ1st𝜔AXA𝒫BB¬A2𝑜2𝑜A
37 numth3 BVBdomcard
38 19 37 syl JHausJ1st𝜔AXA𝒫BBBdomcard
39 38 adantr JHausJ1st𝜔AXA𝒫BB2𝑜ABdomcard
40 nnenom ω
41 40 ensymi ω
42 endomtr ωBωB
43 41 4 42 sylancr JHausJ1st𝜔AXA𝒫BBωB
44 43 adantr JHausJ1st𝜔AXA𝒫BB2𝑜AωB
45 simpr JHausJ1st𝜔AXA𝒫BB2𝑜A2𝑜A
46 31 adantr JHausJ1st𝜔AXA𝒫BB2𝑜AA𝒫B
47 mappwen BdomcardωB2𝑜AA𝒫BAB𝒫B
48 39 44 45 46 47 syl22anc JHausJ1st𝜔AXA𝒫BB2𝑜AAB𝒫B
49 endom AB𝒫BAB𝒫B
50 48 49 syl JHausJ1st𝜔AXA𝒫BB2𝑜AAB𝒫B
51 36 50 syldan JHausJ1st𝜔AXA𝒫BB¬A2𝑜AB𝒫B
52 25 51 pm2.61dan JHausJ1st𝜔AXA𝒫BBAB𝒫B
53 domtr AABAB𝒫BA𝒫B
54 12 52 53 syl2anc JHausJ1st𝜔AXA𝒫BBA𝒫B
55 domtr clsJAAA𝒫BclsJA𝒫B
56 3 54 55 syl2anc JHausJ1st𝜔AXA𝒫BBclsJA𝒫B