Metamath Proof Explorer


Theorem hdmap1eq4N

Description: Convert mapdheq4 to use HDMap1 function. (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap1eq2.h H = LHyp K
hdmap1eq2.u U = DVecH K W
hdmap1eq2.v V = Base U
hdmap1eq2.o 0 ˙ = 0 U
hdmap1eq2.n N = LSpan U
hdmap1eq2.c C = LCDual K W
hdmap1eq2.d D = Base C
hdmap1eq2.l L = LSpan C
hdmap1eq2.m M = mapd K W
hdmap1eq2.i I = HDMap1 K W
hdmap1eq2.k φ K HL W H
hdmap1eq2.f φ F D
hdmap1eq2.mn φ M N X = L F
hdmap1eq4.x φ X V 0 ˙
hdmap1eq4.y φ Y V 0 ˙
hdmap1eq4.z φ Z V 0 ˙
hdmap1eq4.ne φ N Y N Z
hdmap1eq4.xn φ ¬ X N Y Z
hdmap1eq4.eg φ I X F Y = G
hdmap1eq4.ee φ I X F Z = B
Assertion hdmap1eq4N φ I Y G Z = B

Proof

Step Hyp Ref Expression
1 hdmap1eq2.h H = LHyp K
2 hdmap1eq2.u U = DVecH K W
3 hdmap1eq2.v V = Base U
4 hdmap1eq2.o 0 ˙ = 0 U
5 hdmap1eq2.n N = LSpan U
6 hdmap1eq2.c C = LCDual K W
7 hdmap1eq2.d D = Base C
8 hdmap1eq2.l L = LSpan C
9 hdmap1eq2.m M = mapd K W
10 hdmap1eq2.i I = HDMap1 K W
11 hdmap1eq2.k φ K HL W H
12 hdmap1eq2.f φ F D
13 hdmap1eq2.mn φ M N X = L F
14 hdmap1eq4.x φ X V 0 ˙
15 hdmap1eq4.y φ Y V 0 ˙
16 hdmap1eq4.z φ Z V 0 ˙
17 hdmap1eq4.ne φ N Y N Z
18 hdmap1eq4.xn φ ¬ X N Y Z
19 hdmap1eq4.eg φ I X F Y = G
20 hdmap1eq4.ee φ I X F Z = B
21 eqid - U = - U
22 eqid - C = - C
23 eqid 0 C = 0 C
24 1 2 11 dvhlvec φ U LVec
25 14 eldifad φ X V
26 15 eldifad φ Y V
27 16 eldifad φ Z V
28 3 5 24 25 26 27 18 lspindpi φ N X N Y N X N Z
29 28 simpld φ N X N Y
30 1 2 3 4 5 6 7 8 9 10 11 12 13 29 14 26 hdmap1cl φ I X F Y D
31 19 30 eqeltrrd φ G D
32 eqid x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h = x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h
33 1 2 3 21 4 5 6 7 22 23 8 9 10 11 15 31 27 32 hdmap1valc φ I Y G Z = x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h Y G Z
34 1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 26 32 hdmap1valc φ I X F Y = x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h X F Y
35 34 19 eqtr3d φ x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h X F Y = G
36 1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 27 32 hdmap1valc φ I X F Z = x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h X F Z
37 36 20 eqtr3d φ x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h X F Z = B
38 23 32 1 9 2 3 21 4 5 6 7 22 8 11 12 13 14 15 16 18 17 35 37 mapdheq4 φ x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h Y G Z = B
39 33 38 eqtrd φ I Y G Z = B