Metamath Proof Explorer


Theorem hdmapinvlem1

Description: Line 27 in Baer p. 110. We use C for Baer's u. Our unit vector E has the required properties for his w by hdmapevec2 . Our ( ( SE )C ) means the inner product <. C , E >. i.e. his f(u,w) (note argument reversal). (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmapinvlem1.h H = LHyp K
hdmapinvlem1.e E = I Base K I LTrn K W
hdmapinvlem1.o O = ocH K W
hdmapinvlem1.u U = DVecH K W
hdmapinvlem1.v V = Base U
hdmapinvlem1.r R = Scalar U
hdmapinvlem1.b B = Base R
hdmapinvlem1.t · ˙ = R
hdmapinvlem1.z 0 ˙ = 0 R
hdmapinvlem1.s S = HDMap K W
hdmapinvlem1.k φ K HL W H
hdmapinvlem1.c φ C O E
Assertion hdmapinvlem1 φ S E C = 0 ˙

Proof

Step Hyp Ref Expression
1 hdmapinvlem1.h H = LHyp K
2 hdmapinvlem1.e E = I Base K I LTrn K W
3 hdmapinvlem1.o O = ocH K W
4 hdmapinvlem1.u U = DVecH K W
5 hdmapinvlem1.v V = Base U
6 hdmapinvlem1.r R = Scalar U
7 hdmapinvlem1.b B = Base R
8 hdmapinvlem1.t · ˙ = R
9 hdmapinvlem1.z 0 ˙ = 0 R
10 hdmapinvlem1.s S = HDMap K W
11 hdmapinvlem1.k φ K HL W H
12 hdmapinvlem1.c φ C O E
13 eqid LFnl U = LFnl U
14 eqid LKer U = LKer U
15 eqid Base K = Base K
16 eqid LTrn K W = LTrn K W
17 eqid 0 U = 0 U
18 1 15 16 4 5 17 2 11 dvheveccl φ E V 0 U
19 18 eldifad φ E V
20 1 3 4 5 13 14 10 11 19 hdmaplkr φ LKer U S E = O E
21 12 20 eleqtrrd φ C LKer U S E
22 1 4 11 dvhlmod φ U LMod
23 eqid LCDual K W = LCDual K W
24 eqid Base LCDual K W = Base LCDual K W
25 1 4 5 23 24 10 11 19 hdmapcl φ S E Base LCDual K W
26 1 23 24 4 13 11 25 lcdvbaselfl φ S E LFnl U
27 19 snssd φ E V
28 1 4 5 3 dochssv K HL W H E V O E V
29 11 27 28 syl2anc φ O E V
30 29 12 sseldd φ C V
31 5 6 9 13 14 22 26 30 ellkr2 φ C LKer U S E S E C = 0 ˙
32 21 31 mpbid φ S E C = 0 ˙