Metamath Proof Explorer


Theorem hdmaprnlem16N

Description: Lemma for hdmaprnN . Eliminate v . (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem15.h H = LHyp K
hdmaprnlem15.u U = DVecH K W
hdmaprnlem15.v V = Base U
hdmaprnlem15.n N = LSpan U
hdmaprnlem15.c C = LCDual K W
hdmaprnlem15.d D = Base C
hdmaprnlem15.q 0 ˙ = 0 C
hdmaprnlem15.l L = LSpan C
hdmaprnlem15.m M = mapd K W
hdmaprnlem15.s S = HDMap K W
hdmaprnlem15.k φ K HL W H
hdmaprnlem16.se φ s D 0 ˙
Assertion hdmaprnlem16N φ s ran S

Proof

Step Hyp Ref Expression
1 hdmaprnlem15.h H = LHyp K
2 hdmaprnlem15.u U = DVecH K W
3 hdmaprnlem15.v V = Base U
4 hdmaprnlem15.n N = LSpan U
5 hdmaprnlem15.c C = LCDual K W
6 hdmaprnlem15.d D = Base C
7 hdmaprnlem15.q 0 ˙ = 0 C
8 hdmaprnlem15.l L = LSpan C
9 hdmaprnlem15.m M = mapd K W
10 hdmaprnlem15.s S = HDMap K W
11 hdmaprnlem15.k φ K HL W H
12 hdmaprnlem16.se φ s D 0 ˙
13 1 2 11 dvhlmod φ U LMod
14 eqid LSAtoms U = LSAtoms U
15 eqid LSAtoms C = LSAtoms C
16 1 5 11 lcdlmod φ C LMod
17 6 8 7 15 16 12 lsatlspsn φ L s LSAtoms C
18 1 9 2 14 5 15 11 17 mapdcnvatN φ M -1 L s LSAtoms U
19 3 4 14 islsati U LMod M -1 L s LSAtoms U v V M -1 L s = N v
20 13 18 19 syl2anc φ v V M -1 L s = N v
21 simpr φ v V M -1 L s = N v M -1 L s = N v
22 21 fveq2d φ v V M -1 L s = N v M M -1 L s = M N v
23 11 ad2antrr φ v V M -1 L s = N v K HL W H
24 12 eldifad φ s D
25 eqid LSubSp C = LSubSp C
26 6 25 8 lspsncl C LMod s D L s LSubSp C
27 16 24 26 syl2anc φ L s LSubSp C
28 1 9 5 25 11 mapdrn2 φ ran M = LSubSp C
29 27 28 eleqtrrd φ L s ran M
30 29 ad2antrr φ v V M -1 L s = N v L s ran M
31 1 9 23 30 mapdcnvid2 φ v V M -1 L s = N v M M -1 L s = L s
32 22 31 eqtr3d φ v V M -1 L s = N v M N v = L s
33 32 ex φ v V M -1 L s = N v M N v = L s
34 33 reximdva φ v V M -1 L s = N v v V M N v = L s
35 20 34 mpd φ v V M N v = L s
36 11 3ad2ant1 φ v V M N v = L s K HL W H
37 12 3ad2ant1 φ v V M N v = L s s D 0 ˙
38 simp2 φ v V M N v = L s v V
39 simp3 φ v V M N v = L s M N v = L s
40 1 2 3 4 5 6 7 8 9 10 36 37 38 39 hdmaprnlem15N φ v V M N v = L s s ran S
41 40 rexlimdv3a φ v V M N v = L s s ran S
42 35 41 mpd φ s ran S