Metamath Proof Explorer


Theorem hdmaprnlem4N

Description: Part of proof of part 12 in Baer p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
hdmaprnlem1.d D=BaseC
hdmaprnlem1.q Q=0C
hdmaprnlem1.o 0˙=0U
hdmaprnlem1.a ˙=+C
hdmaprnlem1.t2 φtNv0˙
Assertion hdmaprnlem4N φMNt=Ls

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 hdmaprnlem1.d D=BaseC
16 hdmaprnlem1.q Q=0C
17 hdmaprnlem1.o 0˙=0U
18 hdmaprnlem1.a ˙=+C
19 hdmaprnlem1.t2 φtNv0˙
20 eqid LSubSpU=LSubSpU
21 1 2 9 dvhlmod φULMod
22 3 20 4 lspsncl ULModvVNvLSubSpU
23 21 11 22 syl2anc φNvLSubSpU
24 19 eldifad φtNv
25 20 4 21 23 24 lspsnel5a φNtNv
26 1 2 9 dvhlvec φULVec
27 3 20 lss1 ULModVLSubSpU
28 21 27 syl φVLSubSpU
29 20 4 21 28 11 lspsnel5a φNvV
30 29 ssdifd φNv0˙V0˙
31 30 19 sseldd φtV0˙
32 3 17 4 26 31 11 lspsncmp φNtNvNt=Nv
33 25 32 mpbid φNt=Nv
34 33 fveq2d φMNt=MNv
35 34 12 eqtrd φMNt=Ls