Metamath Proof Explorer


Theorem hdmapval

Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in Baer p. 48. We select a convenient fixed reference vector E to be <. 0 , 1 >. (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom P = ( ( ocK )W ) (see dvheveccl ). ( JE ) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our z that the A. z e. V ranges over. The middle term ( I<. E , ( JE ) , z >. ) provides isolation to allow E and T to assume the same value without conflict. Closure is shown by hdmapcl . If a separate auxiliary vector is known, hdmapval2 provides a version without quantification. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapval.h H=LHypK
hdmapfval.e E=IBaseKILTrnKW
hdmapfval.u U=DVecHKW
hdmapfval.v V=BaseU
hdmapfval.n N=LSpanU
hdmapfval.c C=LCDualKW
hdmapfval.d D=BaseC
hdmapfval.j J=HVMapKW
hdmapfval.i I=HDMap1KW
hdmapfval.s S=HDMapKW
hdmapfval.k φKAWH
hdmapval.t φTV
Assertion hdmapval φST=ιyD|zV¬zNENTy=IzIEJEzT

Proof

Step Hyp Ref Expression
1 hdmapval.h H=LHypK
2 hdmapfval.e E=IBaseKILTrnKW
3 hdmapfval.u U=DVecHKW
4 hdmapfval.v V=BaseU
5 hdmapfval.n N=LSpanU
6 hdmapfval.c C=LCDualKW
7 hdmapfval.d D=BaseC
8 hdmapfval.j J=HVMapKW
9 hdmapfval.i I=HDMap1KW
10 hdmapfval.s S=HDMapKW
11 hdmapfval.k φKAWH
12 hdmapval.t φTV
13 1 2 3 4 5 6 7 8 9 10 11 hdmapfval φS=tVιyD|zV¬zNENty=IzIEJEzt
14 13 fveq1d φST=tVιyD|zV¬zNENty=IzIEJEztT
15 riotaex ιyD|zV¬zNENTy=IzIEJEzTV
16 sneq t=Tt=T
17 16 fveq2d t=TNt=NT
18 17 uneq2d t=TNENt=NENT
19 18 eleq2d t=TzNENtzNENT
20 19 notbid t=T¬zNENt¬zNENT
21 oteq3 t=TzIEJEzt=zIEJEzT
22 21 fveq2d t=TIzIEJEzt=IzIEJEzT
23 22 eqeq2d t=Ty=IzIEJEzty=IzIEJEzT
24 20 23 imbi12d t=T¬zNENty=IzIEJEzt¬zNENTy=IzIEJEzT
25 24 ralbidv t=TzV¬zNENty=IzIEJEztzV¬zNENTy=IzIEJEzT
26 25 riotabidv t=TιyD|zV¬zNENty=IzIEJEzt=ιyD|zV¬zNENTy=IzIEJEzT
27 eqid tVιyD|zV¬zNENty=IzIEJEzt=tVιyD|zV¬zNENty=IzIEJEzt
28 26 27 fvmptg TVιyD|zV¬zNENTy=IzIEJEzTVtVιyD|zV¬zNENty=IzIEJEztT=ιyD|zV¬zNENTy=IzIEJEzT
29 12 15 28 sylancl φtVιyD|zV¬zNENty=IzIEJEztT=ιyD|zV¬zNENTy=IzIEJEzT
30 14 29 eqtrd φST=ιyD|zV¬zNENTy=IzIEJEzT