Metamath Proof Explorer


Theorem hdmapval3N

Description: Value of map from vectors to functionals at arguments not colinear with the reference vector E . (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapval3.h H=LHypK
hdmapval3.e E=IBaseKILTrnKW
hdmapval3.u U=DVecHKW
hdmapval3.v V=BaseU
hdmapval3.n N=LSpanU
hdmapval3.c C=LCDualKW
hdmapval3.d D=BaseC
hdmapval3.j J=HVMapKW
hdmapval3.i I=HDMap1KW
hdmapval3.s S=HDMapKW
hdmapval3.k φKHLWH
hdmapval3.te φNTNE
hdmapval3.t φTV
Assertion hdmapval3N φST=IEJET

Proof

Step Hyp Ref Expression
1 hdmapval3.h H=LHypK
2 hdmapval3.e E=IBaseKILTrnKW
3 hdmapval3.u U=DVecHKW
4 hdmapval3.v V=BaseU
5 hdmapval3.n N=LSpanU
6 hdmapval3.c C=LCDualKW
7 hdmapval3.d D=BaseC
8 hdmapval3.j J=HVMapKW
9 hdmapval3.i I=HDMap1KW
10 hdmapval3.s S=HDMapKW
11 hdmapval3.k φKHLWH
12 hdmapval3.te φNTNE
13 hdmapval3.t φTV
14 fveq2 T=0UST=S0U
15 oteq3 T=0UEJET=EJE0U
16 15 fveq2d T=0UIEJET=IEJE0U
17 14 16 eqeq12d T=0UST=IEJETS0U=IEJE0U
18 eqid BaseK=BaseK
19 eqid LTrnKW=LTrnKW
20 eqid 0U=0U
21 1 18 19 3 4 20 2 11 dvheveccl φEV0U
22 21 eldifad φEV
23 1 3 4 5 11 22 13 dvh3dim φxV¬xNET
24 23 adantr φT0UxV¬xNET
25 simp1l φT0UxV¬xNETφ
26 25 11 syl φT0UxV¬xNETKHLWH
27 25 12 syl φT0UxV¬xNETNTNE
28 25 13 syl φT0UxV¬xNETTV
29 simp1r φT0UxV¬xNETT0U
30 eldifsn TV0UTVT0U
31 28 29 30 sylanbrc φT0UxV¬xNETTV0U
32 simp2 φT0UxV¬xNETxV
33 simp3 φT0UxV¬xNET¬xNET
34 1 2 3 4 5 6 7 8 9 10 26 27 31 32 33 hdmapval3lemN φT0UxV¬xNETST=IEJET
35 34 rexlimdv3a φT0UxV¬xNETST=IEJET
36 24 35 mpd φT0UST=IEJET
37 eqid 0C=0C
38 1 3 20 6 37 10 11 hdmapval0 φS0U=0C
39 1 3 4 20 6 7 37 8 11 21 hvmapcl2 φJED0C
40 39 eldifad φJED
41 1 3 4 20 6 7 37 9 11 40 22 hdmap1val0 φIEJE0U=0C
42 38 41 eqtr4d φS0U=IEJE0U
43 17 36 42 pm2.61ne φST=IEJET